Title | DETERMINANT FUNCTIONS AND APPLICATIONS TO STOCHASTIC DIFFERENTIAL EQUATIONS |
Publication Type | Journal Article |
Year of Publication | 2010 |
Authors | LADDE, AG, LADDE, GS |
Secondary Title | Communications in Applied Analysis |
Volume | 14 |
Issue | 3 |
Start Page | 409 |
Pagination | 434 |
Date Published | 08/2010 |
Type of Work | scientific: mathematics |
ISSN | 1083–2564 |
Abstract | A few fundamental results regarding the of calculus of determinant functions of associated with n × n matrix functions are developed. Furthermore, stochastic versions of Liouville–Jacobi [8, 9, 11, 17], Abel-Liouville [1, 2, 17]. Lagrange formula [4, 8, 11, 15–17], Green’s formula [4, 8] and many fundamental results are established for the Ito-Doob type higher order and system of linear stochastic differential equations [6, 10, 12–14].
|
URL | http://www.acadsol.eu/en/articles/14/3/10.pdf |
Short Title | DETERMINANT FUNCTIONS |
Refereed Designation | Refereed |
Full Text | REFERENCES1. Niels Henrik Abel, Œuvres completes de Niels Henrik Abel. Tome I, Imprimerie de Grøndahl & Son, Christiania, 1981, Contenant les memoirs publi ́es par Abel. [Containing the memoirs published by Abel], Edited and with a preface by L. Sylow and S. Lie.
2. _________, Œuvres completes de Niels Henrik Abel. Tome II, Imprimerie de Grøndahl & Son, Christiania, 1981, Contenant les m ́emoirs posthumes d’Abel. [Containing the posthumous memoirs of Abel], Edited and with notes by L. Sylow and S. Lie. 3. John W. Auer, Linear algebra with applications, Prentice Hall College Division, 1991. 4. Earl A. Coddington and Norman Levinson, Theory of ordinary differential equations, Krieger Publishing Company, Malabar, FL, 1984. 5. C. Henry Edwards and David E. Penney, Differential equations computing and modeling, fourth ed., Prentice Hall, Upper Saddle River, NJ, 2007. 6. I. I. Gıhman and A. V. Skorohod, Stochastic differential equations, Springer-Verlag, New York, 1972. 7. Jack L. Goldberg and Arthur J. Schwartz, Systems of ordinary differential equations: An introduction, Joanna Cotler Books, 1973. 8. Philip Hartman, Ordinary differential equations, John Wiley & Sons Inc., New York, 1964. 9. C. G. J. Jacobi, Gesammelte Werke. Bande I–VIII, Herausgegeben auf Veranlassung der Koniglich Preussischen Akademie der Wissenschaften. Zweite Ausgabe, Chelsea Publishing Co., New York, 1969. 10. A. G. Ladde and G. S. Ladde, Dynamic processes under random environmental perturbations, Bull. Marathwada Math. Soc. 8 (2007), no. 2, 96–123. 11. _______, An Introduction to Differential Equations I: Deterministic Modeling, Methods and Analysis, in preparation, 2009. 12. _______, An Introduction to Differential Equations II: Stochastic Modeling, Methods and Analysis, in preparation, 2009. 13. G. S. Ladde and V. Lakshmikantham, Random differential inequalities, Mathematics in Science and Engineering, vol. 150, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, 1980. 14. G. S. Ladde and M. Sambandham, Stochastic versus deterministic systems of differential equations, Monographs and Textbooks in Pure and Applied Mathematics, vol. 260, Marcel Dekker Inc., New York, 2004.
15. Joseph Louis Lagrange, Oeuvres i, Gauthier-Villars, Paris, 1867. 16. _______, Oeuvres iv, Gauthier-Villars, Paris, 1889. 17. J. Liouville, Sur la theorie de la variations des constants arbitraires, J. Math. Pures. Appl. 3 (1838), no. 1, 342–349. |