LARGE TIME BEHAVIOR OF MULTIDIMENSIONAL NONLINEAR LATTICES WITH NONLINEAR DAMPING

TitleLARGE TIME BEHAVIOR OF MULTIDIMENSIONAL NONLINEAR LATTICES WITH NONLINEAR DAMPING
Publication TypeJournal Article
Year of Publication2010
AuthorsOLIVEIRA, JC, PEREIRA, JM, G. MENZALA, PERLA
Secondary TitleCommunications in Applied Analysis
Volume14
Issue2
Start Page155
Pagination176
Date Published04/2010
Type of Workscientific: mathematics
ISSN1083–2564
AMS34D05, 34D45, 58F39.
Abstract
In this paper we study the asymptotic behavior of solutions of multidimensional nonlinear lattices subject to cyclic boundary conditions under the effect of a nonlinear dissipation. We establish the existence of a global attractor.
URLhttp://www.acadsol.eu/en/articles/14/2/3.pdf
Short TitleLARGE TIME BEHAVIOR OF MULTIDIMENSIONAL
Refereed DesignationRefereed
Full Text

REFERENCES

[1] R. V. Agarwal, Difference equations and inequalities, theory, methods and applications, Marcel Dekker, New York, Basel, 2000.
[2] P. W. Bates, K. Lu, B. Wang, Attractors for lattices dynamical systems, Internat. J. Bifur. Chaos Appl. Sci. Eng. 11 (1) (2001), 143–153.
[3] W. L. Briggs, V. E. Henson, The DFT, an owners manual for the discrete Fourier Transform, SIAM, Philadelphia, 1995.
[4] T. Ernaux, G. Nicolis, Propagating waves in discrete bistable reaction-diffusion systems, Phys. D 67 (1993), 237–244.
[5] S. Flach, C. R. Willis, Discrete breathers, Physics Report 295 (1998), 181–164.
[6] N. I. Karachalios, A. N. Yannacopoulos, Global existence and compact attractors for the discrete nonlinear Schr ̈odinger equation, J. Differential Equations, 217 (2005), 88–123.
[7] J. P. Keener, Propagation and its failure in coupled systems of discrete excitable cells, SIAM, J. Appl. Math. 47 (1987), 556–572.
[8] P. G. Kevrekidis, B. A. Malomed, A. R. Bishop, D. J. Frantzeskakis, Localized vortices with a semiinteger charge in nonlinear dynamical lattices, Physical Review E 65, (2001), 1–7.
[9] V. V. Konotop, G. Perla Menzala, Uniform decay rates of solutions of some nonlinear lattices, Nonlinear Analysis 54 (2003), 261–278.
[10] V. V. Konotop, J. E. Munoz Rivera, G. Perla Menzala, Uniform rates of decay of solutions for a nonlinear lattice with memory, Asymptotic Analysis, 38 (2004), 167–185.
[11] V. V. Konotop, G. Perla Menzala, Localized solutions of a nonlinear diatomic lattice, Quarterly of Applied Mathematics, LXIII (2) (2005), 201–223.
[12] B. A. Malomed, P. G. Kevrekidis, D. J. Frantzeskakis, H. E. Nistazakis, A. N. Yamacopoulos, One- and two dimensional solitons in second-harmonic-generating lattices, Physical Review E, 65, (2002), 10–12.
[13] M. Nakao, Global attractors for nonlinear wave equations with nonlinear dissipative terms, J. Differential Equations, 227 (2006), 204–229.
[14] J. C. Oliveira, J. M. Pereira, G. Perla Menzala, Attractors for second order lattices with nonlinear damping, Journal of Difference Equations and Applications, 14 (9) (2008), 899–921.
[15] A. Perez-Munuzuri, V. Perez-Munuzuri, V. Perez-Villar, L. O. Chua, Spiral waves on a 2-d array of nonlinear circuits, IEEE Trans. Circuits Systems 40 (1993), 872–877.
[16] R. Teman, Infinite dimensional dynamical systems in Mechanics and Physics, Springer-Verlag, 1988.
[17] Y. Yan, Attractors and dimensions for discretization of a weakly damped Schr ̈odinger equations and a Sine-Gordon equation, Nonlinear Analysis TMA, 20 (1993), 1417–1452.
[18] S. Zhou, Attractors and approximations for lattice dynamical systems, J. Differential Equations, 200 (2004), 342–368.