SHARP WEIGHTED RELLICH AND UNCERTAINTY PRINCIPLE INEQUALITIES ON CARNOT GROUPS

TitleSHARP WEIGHTED RELLICH AND UNCERTAINTY PRINCIPLE INEQUALITIES ON CARNOT GROUPS
Publication TypeJournal Article
Year of Publication2010
AuthorsKOMBE, ISMAIL
Secondary TitleCommunications in Applied Analysis
Volume14
Issue2
Start Page251
Pagination272
Date Published04/2010
Type of Workscientific: mathematics
ISSN1083–2564
AMS22E30, 26D10., 43A80
Abstract
In this work we prove sharp weighted Rellich-type inequalities and their improved versions for general Carnot groups. To derive the improved Rellich-type inequalities we have established new weighted Hardy-type inequalities with remainder terms. We also prove new sharp forms of the weighted Hardy-Poincare and uncertainty principle inequalities for polarizable Carnot groups.
URLhttp://www.acadsol.eu/en/articles/14/2/10.pdf
Short TitleSHARP RELLICH AND UNCERTAINTY PRINCIPLE INEQUALITIES
Refereed DesignationRefereed
Full Text

REFERENCES

[1] B. Abdellaoui, D. Colorado, I. Peral, Some improved Caffarelli-Kohn-Nirenberg inequalities, Calculus of Variations and Partial Differential Equations 23 (2005), 327–345.
[2] Adimurthi, N. Chaudhuri and M. Ramaswamy, An improved Hardy-Sobolev inequality and its applications, Proceedings of American Mathematical Society 130 (2002), 489-505.
[3] Z. Balogh and J. Tyson, Polar coordinates on Carnot groups, Mathematische Zeitschrift 241 (2002), 697–730.
[4] P. Baras and J. A. Goldstein, The heat equation with a singular potential, Transactions of American Mathematical Society 284 (1984), 121–139.
[5] G. Barbatis, Best constants for higher-order Rellich inequalities in L p (Ω), Mathematische Zeitschrift 255 (2007), no. 4, 877–896.
[6] G. Barbatis, S. Filippas and A. Tertikas, A unified approach to improved L p Hardy inequalities with best constants, Transactions of American Mathematical Society 356 (2004), 2169–2196.
[7] A. Bonfiglioli, E. Lanconelli, F. Uguzzoni, Stratified Lie Groups and Potential Theory for their Sub-Laplacians, Springer-Verlag, Berlin-Heidelberg, 2007.
[8] H. Brezis and J. L. Vazquez, Blow-up solutions of some nonlinear elliptic problems, Rev. Mat. Univ. Complutense Madrid 10 (1997), 443–469.
[9] L. Caffarelli, R. Kohn, and L. Nirenberg, First order interpopationinequalities with weight, Compositio Math. 53 (1984), 259-275
[10] L. Capogna, D. Danielli and N. Garofalo, Capacitary estimates and the local behavior of solutions of nonlinear subelliptic equations, American Journal of Mathematics 6 (1996), 1153–1196.
[11] L. Capogna, D. Danielli, S. Pauls and J. Tyson, An introduction to the Heisenberg group and the sub-Riemannian isoperimetric problem, Birkhauser, Basel, 2007.
[12] D. Danielli, N. Garofalo and Duy-Minh Nhieu, On the best possible character of the norm in some a priori estimates for non-divergence form equations in Carnot groups, Proceedings of the American Mathematical Society 131 (2003), 3487–3498.
[13] D. Danielli, N. Garofalo and N.C. Phuc, Inequalities of Hardy-Sobolev type in Carnot-Carathodory spaces, Sobolev Spaces in Mathematics I. Sobolev Type Inequalities. Vladimir Maz’ya Ed. International Mathematical Series 8 (2009), 117-151.
[14] E. B. Davies, and A. M. Hinz, Explicit constants for Rellich inequalities in L p (Ω), Mathematische Zeitschrift 227 (1998), 511–523.
[15] G. B. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups, Arkiv. f ̈ur Math. 13 (1975), 161–207.
[16] G. B. Folland and A. Sitaram, The Uncertainty Principle: A Mathematical Survey, Journal of Fourier Analysis and Applications 3 (1997), 207–238.
[17] G. B. Folland and E. Stein, Hardy Spaces on Homogeneous Groups, Princeton University Press, Princeton, NJ.
[18] N. Garofalo and E. Lanconelli, Frequency functions on the Heisenberg group, the uncertainty principle and unique continuation, Ann. Inst. Fourier(Grenoble) 40 (1990), 313–356.
[19] N. Ghoussoub, A. Moradifam. On the best possible remaining term in the Hardy inequality, Proc. Natl. Acad. Sci. USA 105 (2008) no 37, 13746–13751.
[20] N. Ghoussoub, A. Moradifam. Bessel potentials and optimal Hardy and Hardy-Rellich inequalities, preprint
[21] J. A. Goldstein and I. Kombe, The Hardy inequality and nonlinear parabolic equations on Carnot groups, Nonlinear Analysis 69 (2008), 4643–4653.
[22] A. Kaplan, Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms, Transactions of the American Mathematical Society 258 (1980), 147–153.
[23] I. Kombe, Sharp weighted L 2 -Hardy-type inequalities and uncertainty principle-type inequalities on Carnot groups, preprint.
[24] I. Kombe and M. Ozaydin, Improved Hardy and Rellich inequalities on Riemannian manifolds, Transactions of the American Mathematical Society 361 (2009), 6191-6203.
[25] R. Monti and F. Serra Cassano, Surfaces measures in Carnot-Careth ́eodory spaces, Calculus of Variations and Partial Differential Equations 13 (2001), 339-376.
[26] F. Rellich, Perturbation theory of eigenvalue problems, Gordon and Breach, New York, 1969.
[27] E. Stein, Harmonic Analysis, Real-Variable Methods, Orthgonality, and Oscillatory Integrals, Princeton University Press, Princeton, NJ.
[28] A. Tertikas and N. Zographopoulos, Best constants in the Hardy-Rellich Inequalities and Related Improvements, Advances in Mathematics 209, (2007), 407–459.
[29] N.Th. Varopoulos, L. Saloff-Coste and T. Coulhon, Analysis and Geometry on Groups. Cambridge University Press, 1992.
[30] J. L. Vazquez and E. Zuazua, The Hardy constant and the asymptotic behaviour of the heat equation with an inverse-square potential, Journal of Functional Analysis 173 (2000), 103–153.
[31] Z.-Q. Wang and M. Willem, Caffarelli-Kohn-Nirenberg inequalities with remainder terms, Journal of Functional Analysis 203 (2003), 550–568.