Title | SHARP WEIGHTED RELLICH AND UNCERTAINTY PRINCIPLE INEQUALITIES ON CARNOT GROUPS |
Publication Type | Journal Article |
Year of Publication | 2010 |
Authors | KOMBE, ISMAIL |
Secondary Title | Communications in Applied Analysis |
Volume | 14 |
Issue | 2 |
Start Page | 251 |
Pagination | 272 |
Date Published | 04/2010 |
Type of Work | scientific: mathematics |
ISSN | 1083–2564 |
AMS | 22E30, 26D10., 43A80 |
Abstract | In this work we prove sharp weighted Rellich-type inequalities and their improved versions for general Carnot groups. To derive the improved Rellich-type inequalities we have established new weighted Hardy-type inequalities with remainder terms. We also prove new sharp forms of the weighted Hardy-Poincare and uncertainty principle inequalities for polarizable Carnot groups.
|
URL | http://www.acadsol.eu/en/articles/14/2/10.pdf |
Short Title | SHARP RELLICH AND UNCERTAINTY PRINCIPLE INEQUALITIES |
Refereed Designation | Refereed |
Full Text | REFERENCES[1] B. Abdellaoui, D. Colorado, I. Peral, Some improved Caffarelli-Kohn-Nirenberg inequalities, Calculus of Variations and Partial Differential Equations 23 (2005), 327–345.
[2] Adimurthi, N. Chaudhuri and M. Ramaswamy, An improved Hardy-Sobolev inequality and its applications, Proceedings of American Mathematical Society 130 (2002), 489-505. [3] Z. Balogh and J. Tyson, Polar coordinates on Carnot groups, Mathematische Zeitschrift 241 (2002), 697–730. [4] P. Baras and J. A. Goldstein, The heat equation with a singular potential, Transactions of American Mathematical Society 284 (1984), 121–139. [5] G. Barbatis, Best constants for higher-order Rellich inequalities in L p (Ω), Mathematische Zeitschrift 255 (2007), no. 4, 877–896. [6] G. Barbatis, S. Filippas and A. Tertikas, A unified approach to improved L p Hardy inequalities with best constants, Transactions of American Mathematical Society 356 (2004), 2169–2196. [7] A. Bonfiglioli, E. Lanconelli, F. Uguzzoni, Stratified Lie Groups and Potential Theory for their Sub-Laplacians, Springer-Verlag, Berlin-Heidelberg, 2007. [8] H. Brezis and J. L. Vazquez, Blow-up solutions of some nonlinear elliptic problems, Rev. Mat. Univ. Complutense Madrid 10 (1997), 443–469. [9] L. Caffarelli, R. Kohn, and L. Nirenberg, First order interpopationinequalities with weight, Compositio Math. 53 (1984), 259-275 [10] L. Capogna, D. Danielli and N. Garofalo, Capacitary estimates and the local behavior of solutions of nonlinear subelliptic equations, American Journal of Mathematics 6 (1996), 1153–1196. [11] L. Capogna, D. Danielli, S. Pauls and J. Tyson, An introduction to the Heisenberg group and the sub-Riemannian isoperimetric problem, Birkhauser, Basel, 2007. [12] D. Danielli, N. Garofalo and Duy-Minh Nhieu, On the best possible character of the norm in some a priori estimates for non-divergence form equations in Carnot groups, Proceedings of the American Mathematical Society 131 (2003), 3487–3498. [13] D. Danielli, N. Garofalo and N.C. Phuc, Inequalities of Hardy-Sobolev type in Carnot-Carathodory spaces, Sobolev Spaces in Mathematics I. Sobolev Type Inequalities. Vladimir Maz’ya Ed. International Mathematical Series 8 (2009), 117-151. [14] E. B. Davies, and A. M. Hinz, Explicit constants for Rellich inequalities in L p (Ω), Mathematische Zeitschrift 227 (1998), 511–523. [15] G. B. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups, Arkiv. f ̈ur Math. 13 (1975), 161–207. [16] G. B. Folland and A. Sitaram, The Uncertainty Principle: A Mathematical Survey, Journal of Fourier Analysis and Applications 3 (1997), 207–238. [17] G. B. Folland and E. Stein, Hardy Spaces on Homogeneous Groups, Princeton University Press, Princeton, NJ. [18] N. Garofalo and E. Lanconelli, Frequency functions on the Heisenberg group, the uncertainty principle and unique continuation, Ann. Inst. Fourier(Grenoble) 40 (1990), 313–356. [19] N. Ghoussoub, A. Moradifam. On the best possible remaining term in the Hardy inequality, Proc. Natl. Acad. Sci. USA 105 (2008) no 37, 13746–13751. [20] N. Ghoussoub, A. Moradifam. Bessel potentials and optimal Hardy and Hardy-Rellich inequalities, preprint [21] J. A. Goldstein and I. Kombe, The Hardy inequality and nonlinear parabolic equations on Carnot groups, Nonlinear Analysis 69 (2008), 4643–4653. [22] A. Kaplan, Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms, Transactions of the American Mathematical Society 258 (1980), 147–153.
[23] I. Kombe, Sharp weighted L 2 -Hardy-type inequalities and uncertainty principle-type inequalities on Carnot groups, preprint. [24] I. Kombe and M. Ozaydin, Improved Hardy and Rellich inequalities on Riemannian manifolds, Transactions of the American Mathematical Society 361 (2009), 6191-6203. [25] R. Monti and F. Serra Cassano, Surfaces measures in Carnot-Careth ́eodory spaces, Calculus of Variations and Partial Differential Equations 13 (2001), 339-376. [26] F. Rellich, Perturbation theory of eigenvalue problems, Gordon and Breach, New York, 1969. [27] E. Stein, Harmonic Analysis, Real-Variable Methods, Orthgonality, and Oscillatory Integrals, Princeton University Press, Princeton, NJ. [28] A. Tertikas and N. Zographopoulos, Best constants in the Hardy-Rellich Inequalities and Related Improvements, Advances in Mathematics 209, (2007), 407–459. [29] N.Th. Varopoulos, L. Saloff-Coste and T. Coulhon, Analysis and Geometry on Groups. Cambridge University Press, 1992. [30] J. L. Vazquez and E. Zuazua, The Hardy constant and the asymptotic behaviour of the heat equation with an inverse-square potential, Journal of Functional Analysis 173 (2000), 103–153. [31] Z.-Q. Wang and M. Willem, Caffarelli-Kohn-Nirenberg inequalities with remainder terms, Journal of Functional Analysis 203 (2003), 550–568. |