COVERING THE SPHERE AND THE BALL IN BANACH SPACES

TitleCOVERING THE SPHERE AND THE BALL IN BANACH SPACES
Publication TypeJournal Article
Year of Publication2009
AuthorsPAPINI, PIERLUIGI
Volume13
Issue4
Start Page579
Pagination8
Date Published2009
ISSN1083-2564
AMS46B99, 52C17
Abstract

We collect and discuss some results concerning different, economical coverings for the unit ball or the unit sphere of Banach spaces.

URLhttp://www.acadsol.eu/en/articles/13/4/9.pdf
Refereed DesignationRefereed
Full Text

REFERENCES
[1] E. Asplund and B. Gr¨unbaum, On the geometry of Minkowski planes, Eins. Math. 6 (1960), 299-306.
[2] B. Bagchi, G. Misra and N.S.N. Sastry (problem proposed by): Coverup Revealed in Hilbert
spaces (Advanced Problem 6577), Amer. Math. Monthly 97 (1990), 936-937.
[3] A. Bezdek, On a generalization of Tarski’s plank problem, Discrete Comput. Geom. 38 (2007), 189-200.
[4] K. B¨or¨oczky, Finite packing and covering, Cambridge University Press, Cambridge, 2004.
[5] B. Carl and D.E. Edmunds, Gelfand numbers and metric entropy of convex hulls in Hilbert
spaces, Studia Math. 159 (2003), 391-402.
[6] M. Cavachi (problem proposed by): The plane covered by disks, Problems and solutions, Amer.
Math. Monthly 106 (1999), 364-365.
[7] L.X. Cheng, Ball-covering property of Banach spaces, Israel J. Math. 156 (2006), 111-123.
[8] L.X. Cheng, Q.J. Cheng and X.Y. Liu, Ball-covering property of Banach spaces that is not
preserved under linear isomorphisms, Sc. China Ser.A: Math. 51 (2008), 143-147.
[9] V.P. Fonf and C. Zanco, Covering spheres of Banach spaces by balls, Math. Ann. to appear.
[10] R.Y. Fu and L.X. Cheng, Ball-coverings property of Banach spaces (Chinese), J. Math. Study
39 (2006), 39-43.
[11] M. Furi and A. Vignoli, On a property of the unit sphere in a linear normed space, Bull. Acad.
Polon. Sc. S´er. Sc. Math. Astr. Phys. 18 (1970), 333-334.
[12] A. Hinrichs and C. Richter, New sets with large Borsuk numbers, Discrete Math. 270 (2003),
137-147.
[13] A. Hinrichs and C. Richter, Tilings, packings, coverings, and the approximation of functions,
Math. Nachr. 267 (2004), 37-45.
[14] V.M. Kadets, Weak cluster points of a sequence and coverings by cylinders, Mat. Fiz. Anal.
Geom. 11 (2004), 161-168.
[15] V.M. Kadets, Coverings by convex bodies and inscribed balls, Proc. Amer. Math. Soc. 133
(2005), 1491-1495.
[16] L. Lyusternik and L. Sˇnirel’man, Topological methods in variational problems and their application
to the differential geometry of surfaces (Russian), Uspehi Matem. Nauk (N.S.) 2 (1947),
no.1 (17), 166-217.
[17] E. Maluta and P.L. Papini, Relative centers and finite nets for the unit ball and its finite subsets,
Boll. Un. Mat. Ital. 7 (1993), 451-472.
[18] E. Maluta and P.L. Papini, Estimates for Kottman’s separation constant in reflexive Banach
spaces, Colloq. Math., to appear.
[19] I. Moln´ar, Citeva probleme nerezolvate de geometrie (Romanian), Gaz. Mat. Fiz. Ser. A 10
(63) (1958), 730-735.
[20] P.L. Papini, Some parameters of Banach spaces, Rend. Sem. Mat. Fis. Milano 53 (1983), 131-
148.
[21] P. Schmitt, Problems in discrete and computational geometry, in: Handbook of convex geometry
(P.M. Gruber and J.M. Wills editors), North-Holland, Amsterdam 1993; 449-483.
[22] H.H. Shi and X.J. Zhang, Minimal ball covering of the unit sphere in Rn (Chinese), Xiamen
Daxue Xuebao Ziran Kexue Ban 45 (2006), 621-623.
[23] R. Whitley, The size of the unit sphere, Canad. J. Math. 20 (1968), 450-455.
[24] X.J. Zhang, Radius of a minimal ball-covering in the space Rn (Chinese), J. Math. Study 40
(2007), 109-113