**REFERENCES**

[1] P. Cavaliere - P. de Lucia, The Cafiero criterion on a Boolean ring, Rend. Acc. Sci. fis. mat.

Napoli (in press).

[2] P. Cavaliere - P. de Lucia - F. Ventriglia, On Drewnowski lemma for non-additive functions

and its consequences, Positivity (in press).

[3] G. Choquet, Theory of capacities, Ann. Inst. Fourier (Grenoble) 5 (1953–1954), 193–295 (1955).

[4] C. Constantinescu, Spaces of Measures, Walter de Gruyter & Co., Berlin, 1984.

[5] P. de Lucia, Funzioni finitamente additive a valori in un gruppo topologico, Quaderni

dell’Unione Matematica Italiana, Vol. 29, Pitagora Editrice, Bologna, 1985.

[6] D. Denneberg, Non-additive measure and integral, Kluwer Academic Publishers Group, Dordrecht, 1994.

[7] P. Ghirardato, On independence for non-additive measures, with a Fubini theorem, J. Econom.

Theory 73 (1997), no. 2, 261–291.

[8] E. Guariglia, K-triangular functions on an orthomodular lattice and the Brooks-Jewett theorem,

Rad. Mat. 7 (1991), no. 2, 241–251.

[9] N. S. Gusel´nikov, The extension of quasi-Lipschitzian set functions (Russian), Mat. Zametki

17 (1975), 21–31.

[10] R. Haydon, A nonreflexive Grothendieck space that does not contain l∞, Israel J. Math. 40

(1981), no. 1, 65–73.

[11] N. J. Kalton - J. W. Roberts, Uniformly exhaustive submeasures and nearly additive set

functions, Trans. Amer. Math. Soc. 278 (1983), no. 2, 803–816.

[12] V. M. Klimkin - T. A. Sribnaya, Convergence of a sequence of weakly regular set functions,

Math. Notes 62 (1997), no. 1-2, 87–92.

[13] V. M. Klimkin - T. A. Sribnaya, Uniform continuity of a family of weakly regular set functions

in a topological space, Math. Notes 74 (2003), no. 1-2, 56–63.

[14] M. Marinacci, Limit laws for non-additive probabilities and their frequentist interpretation, J.

Econom. Theory 84 (1999), no. 2, 145–195.

[15] S. Maaß, A philosophical foundation of non-additive measure and probability, Theory and

Decision 60 (2006), no. 2-3, 175–191.

[16] E. Pap, Null-additive set functions, Kluwer Academic Publishers Group, Dordrecht, 1995.

[17] S. Saeki, The Vitali-Hahn-Saks theorem and measuroids, Proc. Amer. Math. Soc. 114 (1992),

no. 3, 775–782.

[18] L. S. Shapley, A value for n-person games, in: Contributions to the Theory of Games, vol. 2,

pp. 307–317 (Ed: H. Kuhn and A. Tucker), Annals of Mathematics Studies, no. 28, Princeton

University Press, Princeton, N. J., 1953.

[19] T. Traynor, S-bounded additive set functions, in: Vector and operator-valued measures and

applications (Proc. Sympos., Alta, Tah, 1972), pp. 355–365 (Ed: D. H. Tucker and H. B.

Maynard), Academic Press, New York, 1973.

[20] F. Ventriglia, Cafiero theorem for k-triangular functions on an orthomodular lattice, Rend.

Acc. Sci. fis. mat. Napoli (in press).

[21] H. Weber, Compactness in spaces of group-valued contents, the Vitali-Hahn-Saks theorem and

Nikodym’s boundedness theorem, Rocky Mountain J. Math. 16 (1986), no. 2, 253 –275.

[22] H. Weber, FN-Topologies and group-valued measures, in: Handbook of measure theory, vol I,

II, pp. 703–743 (Ed: E. Pap), North-Holland, Amsterdam, 2002.

[23] S. Weber, Conditional measures and their applications to fuzzy sets, Fuzzy Sets and Systems

42 (1991), no. 1, 73–85