AN OVERVIEW ON SPECTRAL THEORY FOR NONLINEAR OPERATORS

TitleAN OVERVIEW ON SPECTRAL THEORY FOR NONLINEAR OPERATORS
Publication TypeJournal Article
Year of Publication2009
AuthorsCALAMAI, ALESSANDRO, FURI, MASSIMO, VIGNOLI, ALFONSO
Volume13
Issue4
Start Page509
Pagination26
Date Published2009
ISSN1083-2564
AMS47H14, 47J05, 47J10
Abstract

We compare different spectral theories for nonlinear operators, focusing in particular on the notion of spectrum at a point recently introduced by the authors. We discuss the main properties of the nonlinear spectrum and present illustrating applications and examples.

URLhttp://www.acadsol.eu/en/articles/13/4/5.pdf
Refereed DesignationRefereed
Full Text

REFERENCES
[1] J. Appell, Introducci´on a la teor´ıa espectral de los operadores no lineales, unpublished lecture
notes.
[2] J. Appell, E. De Pascale and A. Vignoli, A comparison of different spectra for nonlinear operators,
Nonlinear Anal. TMA 40 (2000), 73–90.
[3] J. Appell, E. De Pascale and A. Vignoli, Nonlinear spectral theory, de Gruyter, Berlin, 2004.
[4] J. Appell and M. D¨orfner, Some spectral theory for nonlinear operators, Nonlinear Anal. TMA
28 (1997), 1955–1976.
[5] J. Appell, E. Giorgieri and M. V¨ath, On a class of maps related to the Furi–Martelli–Vignoli
spectrum, Ann. Mat. Pura Appl. 179 (2001), 215–228.
[6] P. Benevieri and M. Furi, Degree for locally compact perturbations of Fredholm maps in Banach
spaces, Abstr. Appl. Anal. 2006, Art. ID 64764, 20 pp.
[7] A. Calamai, The Invariance of Domain Theorem for compact perturbations of nonlinear Fredholm
maps of index zero, Nonlinear Funct. Anal. Appl. 9 (2004), 185–194.
[8] A. Calamai, A degree theory for a class of noncompact perturbations of Fredholm maps, PhD
Thesis, Universit`a di Firenze, 2005.
[9] A. Calamai, M. Furi and A. Vignoli, A new spectrum for nonlinear operators in Banach spaces,
Nonlinear Funct. Anal. Appl., to appear.
[10] M. D¨orfner, Spektraltheorie f¨ur nichtlineare Operatoren, PhD Thesis, Universit¨at W¨urzburg,
1997.
[11] W. Feng, A new spectral theory for nonlinear operators and its applications, Abstr. Appl. Anal.
2 (1997) 163–183.
[12] M. Furi, M. Martelli and A. Vignoli, Stably solvable operators in Banach spaces, Atti Accad.
Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. 60 (1976) 21–26.
[13] M. Furi, M. Martelli and A. Vignoli, Contributions to the spectral theory for nonlinear operators
in Banach spaces, Ann. Mat. Pura Appl. 118 (1978), 229–294.
[14] M. Furi, M. Martelli and A. Vignoli, On the solvability of nonlinear operator equations in
normed spaces, Ann. Mat. Pura Appl. 124 (1980), 321–343.
[15] M. Furi and A. Vignoli, A nonlinear spectral approach to surjectivity in Banach spaces, J.
Funct. Anal. 20 (1975), 304–318.
[16] M. Furi and A. Vignoli, Spectrum for nonlinear maps and bifurcation in the non differentiable
case, Ann. Mat. Pura Appl. 4 (1977), 265–285.
[17] K. Georg and M. Martelli, On spectral theory for nonlinear operators, J. Funct. Anal. 24
(1977), 140–147.
[18] G. Infante and J.R.L. Webb, A finite dimensional approach to nonlinear spectral theory, Nonlinear
Anal. 51 (2002), 171–188.
[19] R.I. Kachurovskij, Regular points, spectrum and eigenfunctions of nonlinear operators, Dokl.
Akad. Nauk SSSR 188 (1969) 274–277 (Russian. English translation: Soviet Math. Dokl. 10
(1969), 1101–1105).
[20] C. Kuratowski, Topologie, Monografie Matematyczne 20, Warszawa, 1958.
[21] I.J. Maddox and A.W. Wickstead, The spectrum of uniformly Lipschitz mappings, Proc. Royal
Irish Acad. 89 (1989), 101–114.
[22] E.L. May, Localizing the spectrum, Pacific J. Math. 44 (1973), 211–218.
[23] J.W. Neuberger, Existence of a spectrum for nonlinear transformations, Pacific J. Math. 31
(1969), 157–159.
[24] A. Rhodius, Der numerische Wertebereich und die L¨osbarkeit linearer und nichtlinearer Operatorengleichungen,
Math. Nachr. 79 (1977), 343–360.
[25] P. Santucci and M. V¨ath, On the definition of eigenvalues for nonlinear operators, Nonlinear
Anal. 40 (2000), 565–576.
[26] P. Santucci and M. V¨ath, Grasping the phantom: a new approach to nonlinear spectral theory,
Ann. Mat. Pura Appl. 180 (2001), 255–284.
[27] M. V¨ath, The Furi–Martelli–Vignoli spectrum vs. the phantom, Nonlinear Anal. 47 (2001),
2237–2248.
[28] M. V¨ath, Coincidence points of function pairs based on compactness properties, Glasg. Math.
J. 44 (2002), 209–230.