REFERENCES
[1] J. Appell, Introducci´on a la teor´ıa espectral de los operadores no lineales, unpublished lecture
notes.
[2] J. Appell, E. De Pascale and A. Vignoli, A comparison of different spectra for nonlinear operators,
Nonlinear Anal. TMA 40 (2000), 73–90.
[3] J. Appell, E. De Pascale and A. Vignoli, Nonlinear spectral theory, de Gruyter, Berlin, 2004.
[4] J. Appell and M. D¨orfner, Some spectral theory for nonlinear operators, Nonlinear Anal. TMA
28 (1997), 1955–1976.
[5] J. Appell, E. Giorgieri and M. V¨ath, On a class of maps related to the Furi–Martelli–Vignoli
spectrum, Ann. Mat. Pura Appl. 179 (2001), 215–228.
[6] P. Benevieri and M. Furi, Degree for locally compact perturbations of Fredholm maps in Banach
spaces, Abstr. Appl. Anal. 2006, Art. ID 64764, 20 pp.
[7] A. Calamai, The Invariance of Domain Theorem for compact perturbations of nonlinear Fredholm
maps of index zero, Nonlinear Funct. Anal. Appl. 9 (2004), 185–194.
[8] A. Calamai, A degree theory for a class of noncompact perturbations of Fredholm maps, PhD
Thesis, Universit`a di Firenze, 2005.
[9] A. Calamai, M. Furi and A. Vignoli, A new spectrum for nonlinear operators in Banach spaces,
Nonlinear Funct. Anal. Appl., to appear.
[10] M. D¨orfner, Spektraltheorie f¨ur nichtlineare Operatoren, PhD Thesis, Universit¨at W¨urzburg,
1997.
[11] W. Feng, A new spectral theory for nonlinear operators and its applications, Abstr. Appl. Anal.
2 (1997) 163–183.
[12] M. Furi, M. Martelli and A. Vignoli, Stably solvable operators in Banach spaces, Atti Accad.
Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. 60 (1976) 21–26.
[13] M. Furi, M. Martelli and A. Vignoli, Contributions to the spectral theory for nonlinear operators
in Banach spaces, Ann. Mat. Pura Appl. 118 (1978), 229–294.
[14] M. Furi, M. Martelli and A. Vignoli, On the solvability of nonlinear operator equations in
normed spaces, Ann. Mat. Pura Appl. 124 (1980), 321–343.
[15] M. Furi and A. Vignoli, A nonlinear spectral approach to surjectivity in Banach spaces, J.
Funct. Anal. 20 (1975), 304–318.
[16] M. Furi and A. Vignoli, Spectrum for nonlinear maps and bifurcation in the non differentiable
case, Ann. Mat. Pura Appl. 4 (1977), 265–285.
[17] K. Georg and M. Martelli, On spectral theory for nonlinear operators, J. Funct. Anal. 24
(1977), 140–147.
[18] G. Infante and J.R.L. Webb, A finite dimensional approach to nonlinear spectral theory, Nonlinear
Anal. 51 (2002), 171–188.
[19] R.I. Kachurovskij, Regular points, spectrum and eigenfunctions of nonlinear operators, Dokl.
Akad. Nauk SSSR 188 (1969) 274–277 (Russian. English translation: Soviet Math. Dokl. 10
(1969), 1101–1105).
[20] C. Kuratowski, Topologie, Monografie Matematyczne 20, Warszawa, 1958.
[21] I.J. Maddox and A.W. Wickstead, The spectrum of uniformly Lipschitz mappings, Proc. Royal
Irish Acad. 89 (1989), 101–114.
[22] E.L. May, Localizing the spectrum, Pacific J. Math. 44 (1973), 211–218.
[23] J.W. Neuberger, Existence of a spectrum for nonlinear transformations, Pacific J. Math. 31
(1969), 157–159.
[24] A. Rhodius, Der numerische Wertebereich und die L¨osbarkeit linearer und nichtlinearer Operatorengleichungen,
Math. Nachr. 79 (1977), 343–360.
[25] P. Santucci and M. V¨ath, On the definition of eigenvalues for nonlinear operators, Nonlinear
Anal. 40 (2000), 565–576.
[26] P. Santucci and M. V¨ath, Grasping the phantom: a new approach to nonlinear spectral theory,
Ann. Mat. Pura Appl. 180 (2001), 255–284.
[27] M. V¨ath, The Furi–Martelli–Vignoli spectrum vs. the phantom, Nonlinear Anal. 47 (2001),
2237–2248.
[28] M. V¨ath, Coincidence points of function pairs based on compactness properties, Glasg. Math.
J. 44 (2002), 209–230.