“ON REVIENT TOUJOURS A SON PREMIER AMOUR”: ON THE MATHEMATICAL WORK OF ESPEDITO DE PASCALE

Title“ON REVIENT TOUJOURS A SON PREMIER AMOUR”: ON THE MATHEMATICAL WORK OF ESPEDITO DE PASCALE
Publication TypeJournal Article
Year of Publication2009
AuthorsAPPELL, JÜRGEN
Volume13
Issue4
Start Page461
Pagination16
Date Published2009
ISSN1083-2564
AMS01A75, 34-99, 45-99, 46-99, 47-99
Abstract

In the first part of this note, we briefly describe Espedito De Pascale’s mathematical work during the last 30 years. In the second part we discuss some aspects of numerical ranges for nonlinear operators which have been a field of particular interest of De Pascale.

URLhttp://www.acadsol.eu/en/articles/13/4/2.pdf
Refereed DesignationRefereed
Full Text

REFERENCES
[1] A. K. Abdulazizov, E. De Pascale, P. P. Zabrejko, Bohl’s theorem on bounded solutions: Infinite
systems of ordinary differential equations, Rend. Sci. Math. Appl. A 128 (1995), 37-52.
[2] J. Appell, A. Buic˘a, Numerical ranges for pairs of operators, duality mappings with gauge
function, and spectra of nonlinear operators, Mediterranean J. Math. 3 (2006), 1-13.
[3] J. Appell, A. Carbone, E. De Pascale, A note on the existence and uniqueness of H¨older solutions
of nonlinear singular integral equations, Zeitschr. Anal. Anwend. 11, 3 (1992), 377-384.
[4] J. Appell, E. De Pascale, Su alcuni parametri connessi con la misura di non compattezza di
Hausdorff in spazi di funzioni misurabili, Boll. Unione Mat. Ital. B 3 (1984), 497-515.
[5] J. Appell, E. De Pascale, Th´eor`emes de bornage pour l’op´erateur de Nemyckii dans les espaces
id´eaux, Canad. J. Math. 38, 6 (1986), 1281-1299.
[6] J. Appell, E. De Pascale, Lipschitz and Darbo conditions for the superposition operator in some
non-ideal spaces of smooth functions, Annali Mat. Pura Appl. 158 (1991), 205-217.
[7] J. Appell, E. De Pascale, O. W. Diallo, La fonction de Green pour des ´equations int´egrodiff´erentielles
de type Barbachine, Rend. Sci. Mat. Appl. 127, 2 (1993), 149-159.
[8] J. Appell, E. De Pascale, N. A. Evkhuta, P. P. Zabrejko, On the two-step Newton method for
the solution of nonlinear operator equations, Math. Nachr. 172 (1995), 5-14.
[9] J. Appell, E. De Pascale, A. S. Kalitvin, P. P. Zabrejko, On the application of the NewtonKantorovich
method to nonlinear partial integral equations, Zeitschr. Anal. Anwend. 15, 2
(1996), 397-418.
[10] J. Appell, E. De Pascale, Ju. V. Lysenko, P. P. Zabrejko, New results on Newton-Kantorovich
approximations with applications to nonlinear integral equations, Numer. Funct. Anal. Optim. 18, 1 (1997), 1-17.
[11] J. Appell, E. De Pascale, H. T. Nguyen, P. P. Zabrejko, Nonlinear integral inclusions of Hammerstein
type, Topol. Methods Nonlin. Anal. 5 (1995), 111-124.
[12] J. Appell, E. De Pascale, H. T. Nguyen, P. P. Zabrejko, Multivalued superpositions, Diss. Math. 464 (1995), 1-59.
[13] J. Appell, E. De Pascale, A. Vignoli, A comparison of different spectra for nonlinear operators,
Nonlin. Anal. TMA 40, 1 (2000), 73-90.
[14] J. Appell, E. De Pascale, A. Vignoli, A semilinear Furi-Martelli-Vignoli spectrum, Zeitschr.
Anal. Anwend. 20, 3 (2001), 565-577.
[15] J. Appell, E. De Pascale, A. Vignoli, Nonlinear Spectral Theory, DeGruyter Series Nonlin.
Anal. Appl. 10, DeGruyter, Berlin 2004.
[16] J. Appell, E. De Pascale, P. P. Zabrejko, An application of B. N. Sadovskij’s fixed point principle
to nonlinear singular equations, Zeitschr. Anal. Anwend. 6 (1987), 193-208.
[17] J. Appell, E. De Pascale, P. P. Zabrejko, Multivalued superposition operators,
Rend. Sem. Mat. Univ. Padova 86 (1991), 213-231.
[18] J. Appell, E. De Pascale, P. P. Zabrejko, On the application of the Newton-Kantorovich method
to nonlinear integral equations of Uryson type, Numer. Funct. Anal. Optim. 12, 3 (1991), 271- 283.
[19] J. Appell, E. De Pascale, P. P. Zabrejko, On the application of the method of successive approximations
and the Newton-Kantorovich method to nonlinear functional-integral equations,
Adv. Math. Sci. Appl. 2, 1 (1993), 25-38
[20] J. Appell, E. De Pascale, P. P. Zabrejko, Some remarks on Banach limits, Atti Sem. Mat. Fis.
Univ. Modena 42, 1 (1994), 273-278.
[21] J. Appell, E. De Pascale, P. P. Zabrejko, Convergence of the Newton-Kantorovich method under
Vertgejm conditions: A new improvement, Zeitschr. Anal. Anwend. 17, 2 (1998), 271-280.
[22] J. Appell, E. De Pascale, P. P. Zabrejko, On the unique solvability of Hammerstein integral
equations with non-symmetric kernels, Progr. Nonlin. Diff. Equ. 40 (2000), 27-34.
[23] V. Bur´yˇskov´a, Some properties of nonlinear adjoint operators, Rocky Mount. J. Math. 28 (1998), 41-59.
[24] D. Caponetti, E. De Pascale, P. P. Zabrejko, On the Newton-Kantorovich method in K-normed
linear spaces, Rend. Circ. Mat. Palermo 49 (2000), 545-560.
[25] Y. J. Cheng, H¨older continuity of the inverse of the p-Laplacian, J. Math. Anal. Appl. 221
(1998), 734-748.
[26] G. Chiaselotti, E. De Pascale, G. Marino, Nonlinear contractions in (o)-E-metric spaces, Rend.
Circ. Mat. Palermo II 33 (1993), 249-257.
[27] F. Cianciaruso, A further journey in the “terra incognita” of the Newton-Kantorovich method,
Nonlin. Funct. Anal. Appl. (to appear).
[28] F. Cianciaruso, E. De Pascale, Discovering the algebraic structure on the metric injective envelope
of a real Banach space, Topology Appl. 78, 3 (1997), 285-292.
[29] F. Cianciaruso, E. De Pascale, The Hausdorff measure of non hyperconvexity, Atti Sem. Mat.
Fis. Univ. Modena 47, 1 (1999), 261-267.
[30] F. Cianciaruso, E. De Pascale, The Newton-Kantorovich approximations for nonlinear integrodifferential
equations of mixed type, Ric. Mat. 51, 2 (2002), 1-12.
[31] F. Cianciaruso, E. De Pascale, Newton-Kantorovich approximations when the derivative is
H¨olderian: Old and new results, Numer. Funct. Anal. Optim. 24, 7 (2003), 713-723.
[32] F. Cianciaruso, E. De Pascale, Estimates of majorizing sequences in the Newton-Kantorovich
method, Numer. Funct. Anal. Optim. 27, 5 (2006), 529-538.
[33] F. Cianciaruso, E. De Pascale, Estimates of majorizing sequences in the Newton-Kantorovich
method: A further improvement, J. Math. Anal. Appl. 322 (2006), 329-335.
[34] F. Cianciaruso, E. De Pascale, P. P. Zabrejko, Some remarks on the Newton-Kantorovich approximations,
Atti Sem. Mat. Fis. Univ. Modena 48, 1 (2000), 207-215.
[35] G. Conti, E. De Pascale, The numerical range in the nonlinear case, Boll. Unione Mat. Ital. B
15 (1978), 210-216.
[36] G. Conti, E. De Pascale, A remark on surjectivity of quasi-bounded P-compact maps, Rend.
Ist. Mat. Univ. Trieste 8 (1977), 167-171.
[37] C. T. Cremins, G. Infante, A semilinear A-spectrum, Discrete Cont. Dynam. Systems 1, 2
(2008), 235-242.
[38] G. Darbo, Punti uniti in trasformazioni a codominio non compatto, Rend. Sem. Math. Univ.
Padova 24 (1955), 84-92.
[39] E. De Pascale, A finite dimensional reduction of the Schauder conjecture, Comm. Math. Univ.
Carolinae 34, 3 (1993), 401-404.
[40] E. De Pascale, L. De Pascale, Fixed points for some non-obviously contractive operators, Proc.
Amer. Math. Soc. 130, 11 (2002), 3249-3254.
[41] E. De Pascale, R. Guzzardi, On boundary conditions and fixed points for α-nonexpansive multivalued
mappings, Atti Accad. Naz. Lincei 58 (1975), 110-116.
[42] E. De Pascale, R. Guzzardi, On the boundary value dependence for the topological degree of
multivalued noncompact maps, Boll. Unione Mat. Ital. A 13 (1976), 110-116.
[43] E. De Pascale, R. Guzzardi, Positive fixed points and bifurcation for non-differentiable maps,
Pubbl. Dip. Mat. Univ. Calabria 14 (1983), 1-14.
[44] E. De Pascale, R. Iannacci, Periodic solutions of generalized Lienard equations with delay, Proc.
Equadiff. Conf. W¨urzburg, Lect. Notes Math. 1017 (1983), 148-156.
[45] E. De Pascale, G. Lewicki, G. Marino, Some conditions for compactness in BC(Q) and their
application to boundary value problems, Analysis 22, 1 (2002), 21-32.
[46] E. De Pascale, G. Marino, On the proof of the abstract Cauchy-Kowalewskaya type theorems:
Some improvements, Dyn. Systems Appl. 3, 2 (1994), 259-266.
[47] E. De Pascale, G. Marino, G. Metafune, On the method of backward steps by Carath´eodoryTonelli,
Zeitschr. Anal. Anw. 16, 3 (1996), 765-770.
[48] E. De Pascale, G. Marino, P. Pietramala, The use of the E-metric spaces in the search for fixed
points, Matematiche (Catania) 48, 2 (1993), 367-376.
[49] E. De Pascale, P. L. Papini, Cones and projections onto subspaces in Banach spaces, Boll.
Unione Mat. Ital. A 3 (1984), 411-420.
[50] E. De Pascale, N. Shirokonova, P. P. Zabrejko, New solvability conditions of Ljapunov-Schmidt
integral equations [in Russian], Dokl. Akad. Nauk BSSR 44, 3 (2000), 14-17.
[51] E. De Pascale, G. Trombetta, Un criterio di compattezza e la misura di noncompattezza di
Hausdorff per sottoinsiemi dello spazio delle funzioni misurabili, Rend. Sem. Mat. Fis. Milano 53 (1983), 149-151.
[52] E. De Pascale, G. Trombetta, A compactness criterion and the Hausdorff measure of noncompactness
for subsets of the space of measurable functions, Ric. Mat. 33 (1984), 133-143.
[53] E. De Pascale, G. Trombetta, Un approccio al grado topologico per applicazioni debolmente
continue in spazi di Banach riflessivi, Le Matematiche 39 (1984), 121-132.
[54] E. De Pascale, G. Trombetta, Confronto tra i gradi topologici di Canfora-Pacella e di BrowderPetryshyn,
Rend. Circ. Mat. Palermo II 12 (1986), 213-217.
[55] E. De Pascale, G. Trombetta, Fixed points and best approximations for convexly condensing
functions in topological vector spaces, Rend. Mat. Appl. 11 (1991), 175-186.
[56] E. De Pascale, G. Trombetta, A theorem on best approximations in topological vector spaces,
Proc. NATO Conf. Approx. Theory, Kluwer 1992, 351-355.
[57] E. De Pascale, G. Trombetta, Sui sottoinsiemi finitamente compatti di S(Ω), Boll. Unione Mat.
Ital. A 8 (1994), 243-249.
[58] E. De Pascale, G. Trombetta, H. Weber, Convexly totally bounded sets. Solution of a problem
of Idzik, Annali Sc. Norm. Sup. Pisa 20, 3 (1993), 341-355. 476 J. APPELL
[59] E. De Pascale, P. P. Zabrejko, Il teorema di Bohl sulle soluzioni limitate per i sistemi di infinite
equazioni differenziali ordinarie, Rend. Sci. Mat. Appl. 128 (1994), 1-16.
[60] E. De Pascale, P. P. Zabrejko, New convergence criteria for the Newton-Kantorovich method
and applications to nonlinear integral equations, Rend. Sem. Mat. Univ. Padova 100 (1998), 211-230.
[61] E. De Pascale, P. P. Zabrejko, The chord method in Banach spaces, Nonlin. Funct. Anal. Appl.
7, 4 (2002), 659-671.
[62] E. De Pascale, P. P. Zabrejko, Fixed point theorems for operators in spaces of continuous functions,
Fixed Point Theory 5, 1 (2004), 117-129.
[63] W. Feng, A new spectral theory for nonlinear operators and its applications, Abstr. Appl. Anal. 2 (1997), 163-183.
[64] W. Feng, J. R. L. Webb, A spectral theory for semilinear operators and its applications, in
Progr. Nonlin. Diff. Equ. Appl. 40, Birkh¨auser, Basel 2000, 149-163.
[65] M. Furi, M. Martelli, A. Vignoli, Contributions to the spectral theory for nonlinear operators
in Banach spaces, Annali Mat. Pura Appl. 128 (1978), 229-294.
[66] M. Furi, A. Vignoli, A nonlinear spectral approach to surjectivity in Banach spaces, J. Funct. Anal. 20 (1975), 304-318.
[67] G. Infante, J. R. L. Webb, A finite-dimensional approach to nonlinear spectral theory, Nonlin. Anal. TMA 51, 1 (2002), 171-188.
[68] J. R. Isbell, Three remarks on injective envelopes, J. Math. Anal. Appl. 27, (1969), 516-518.
[69] M. A. Krasnosel’skij, On the continuity of the operator F u(x) = f(x, u(x)) [in Russian], Doklady
Akad. Nauk SSSR 77, 2 (1951), 185-188.
[70] P. Lindqvist, On the equation div (|∇u| p−2∇u) + λ|u| p−2u = 0, Proc. Amer. Math. Soc. 109, 2 (1990), 157-163.
[71] J. L. Lions, Quelques M´ethodes de R´esolution des Probl`emes aux Limites Non Lin´eaires, Gauthier
Villars, Paris 1969
[72] B. Lou, Fixed points for operators in a space of continuous functions and applications, Proc.
Amer. Math. Soc. 127, 8 (1999), 2259-2264.
[73] I. J. Maddox, A. W. Wickstead, The spectrum of uniformly Lipschitz mappings, Proc. Royal
Irish Acad. Sect. A 89 (1989), 101-114.
[74] G. Minty, Monotone nonlinear operators in Hilbert space, Duke Math. J. 29 (1962), 341-346.
[75] B. N. Sadovskij, On a fixed point principle [in Russian], Funkt. Anal. Prilozh. 1, 2 (1967), 74-76.
[76] H. Weber, Ein ϕ-asymptotisches Spektrum und Surjektivit¨atss¨atze vom Fredholm-Typ f¨ur nichtlineare
Operatoren mit Anwendungen, Math. Nachr. 117 (1984), 7-35.
[77] E. H. Zarantonello, The closure of the numerical range contains the spectrum, Pacific J. Math. 22 (1967), 575-595.
[78] E. H. Zarantonello, Proyecciones sobre conjuntos convexos en el espacio de Hilbert y teor´ıa
espectral, Revista Uni´on Mat. Argentina 26 (1972), 187-201.
[79] E. Zeidler, Nonlinear Functional Analysis and its Applications I: Fixed Point Theorems, Springer, Berlin 1991.
[80] E. Zeidler, Nonlinear Functional Analysis and its Applications II/B: Nonlinear Monotone Operators, Springer, Berlin 1991.