DIFFERENTIAL INVARIANTS FOR NONLINEAR PDES

TitleDIFFERENTIAL INVARIANTS FOR NONLINEAR PDES
Publication TypeJournal Article
Year of Publication2009
AuthorsYILMAZ, HALIS
Volume13
Issue4
Start Page659
Pagination11
Date Published2009
ISSN1083-2564
AMS99Z00
Abstract

We study differential invariants for scalar evolution equations such as the KadomtsevPetviashvili and Novikov-Veselov equations.

URLhttp://www.acadsol.eu/en/articles/13/4/15.pdf
Refereed DesignationRefereed
Full Text

REFERENCES
[1] Korteweg, D.J. and de Vries, G., On the change of form of long waves advancing in a rectangular
canal, and on a new type of long stationary waves, Philos. Mag. Ser. 5 39 (1895), 422-443.
[2] Gardner, C.S., Greene, J.M., Kruskal, M.D. and Miura, R.M., Method for solving the
Korteweg-de Vries equation, Phys. Rev. Lett. 19 (1967), 1095-1097.
[3] Gardner C.S., Greene J.M., Kruskal, M.D. and Miura, R.M., Korteweg-de Vries and generalizations.
VI., Methods for exact solution, Commun. Pur Appl. Math. 27 (1974), 97-133.
[4] Lax, P.D., Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl.
Math. 21 (1968), 467-490.
[5] Zakharov, V.E. and Shabat, A.B., Exact theory of two-dimensional self focusing and onedimensioanal
self-modulation of waves in nonlinear media, Soviet Phys. JETP 34 (1972), 62-69.
[6] Ablowitz, M.J., Kaup, D.J., Newell, A. C. and Segur, H., Method for solving the sine-Gordon
equation, Phys. Rev. Lett. 30 (1973), 1262–1264.
[7] Ablowitz, M.J., Kaup, D.J., Newell, A.C. and Segur, H., Nonlinear-evolution equations of
physical significance, Phys. Rev. Lett. 31 (1973), 125–127.
[8] Wadati, M., The modified Korteweg-de Vries equation, J. Phys. Soc. Japan 32 (1972), 1681– 1688.
[9] Zakharov, V.E. and Shabat, A.B., A scheme for integrating the nonlinear equations of mathematical
physics by the method of the inverse scattering problem .I., Funkcional. Anal. Appl.
8 (1974), 226–235.
[10] Zakharov, V.E. and Shabat, A.B., Integration of the nonlinear equations of mathematical
physics by the method of the inverse scattering problem. II., Funktsional. Anal. Appl. 13
(1979), 166–174.
[11] Hirota, R., Direct methods in soliton theory, in: Solitons (Ed: R K Bullough and P J Caudrey),
Springer-Verlag, Berlin, 1980.
[12] Darboux, G., Le¸cons sur la th´eorie gen´erale des surfaces, Gauthier-Villars, Paris, 1897.
[13] Athorne, C., A Z
2 × R
3 Toda system, Phys. Lett. A 206 (1995) 162-166.
[14] Konopel’chenko, B.G., The two-dimensional second-order differential spectral problem: compatibility
conditions, general BTs and integrable equations, Inverse problems 4 (1988) 151-163.
[15] Yilmaz, H. and Athorne, C., The geometrically invariant form of evolution equations, J. Phys.
A35 (2002), No 11, 2619-2625.