REFERENCES
[1] J. M. Borwein and A. S. Lewis, Convex Analysis and Nonlinear Optimization, Theory and
Examples, Springer, 2006.
[2] F. E. Browder, Multi-valued monotone nonlinear mapping and duality mapping in Banach
spaces, Trans. Amer. Math. Soc. 118 (1965), 338–351.
[3] F. E. Browder, Fixed point theorems on infinite dimensional manifolds, Trans. Amer. Math.
Soc. 119 (1965), 179–194.
[4] F. E. Browder, Convergence of approximants to fixed points of nonlinear maps in Banach
spaces, Arch. Rational Mech. Anal. 24 (1967), 82–90.
[5] R. E. Bruck, A strongly convergent iterative solution of 0 ∈ U(x) for a maximal monotone
operator in Hilbert space, J. Math. Anal. Appl. 48 (1974), 114–126.
[6] R. E. Bruck and S. Reich, A general convergence principle in nonlinear functional analysis,
Nonlinear Anal. 4 no. 5 (1980), 939–950.
[7] J. X. da Cruz Neto, L. L. Lima, and P. R. Oliveira, Geodesic algorithm in Riemannian manifolds,
Balkan J. Geom. Appl. 3 (1998), 89–100.
[8] J. X. da Cruz Neto, O. P. Ferreira and L. R. Lucambio Perez, A proximal regularization of
the steepest descent method in Riemannian manifold, Balkan J. Geom. Appl. 4 (1999), 1–8.
[9] J. X. da Cruz Neto, O. P. Ferreira and P. R. Lucambio, Monotone point-to-set vector fields,
Balkan J. Geom. Appl. 5 no. 1 (2000), 69-79.
[10] J. X. da Cruz Neto, O. P. Ferreira and L. R. Lucambio P´erez, Contributions to the study of
monotone vector fields, Acta Math. Hungarica 94 no. 4 (2002), 307–320.
[11] J. X. da Cruz Neto, O.P. Ferreira, L. R. Lucambio P´erez and S. Z. N´emeth, Convexand
monotone-transformable mathematical programming problems and a proximal-like point
method, Journal of Global Optimization 35 no. 1 (2006), 53–69.
[12] M. P. DoCarmo, Riemannian Geometry, Boston: Birkhauser, 1992.
[13] O. P. Ferreira, L. R. Lucambio P´erez and S. Z. N´emeth, Singularities of monotone vector fields
and an extragradient-type algorithm, J. Global Optim. 31 (2005), 133–151.
[14] O. P. Ferreira and P. R. Oliveira, Subgradient algorithm on Riemannian manifolds, J. Optim.
Theory Appl. 97 no. 1 (1998), 93–104.
[15] O. P. Ferreira and P. R. Oliveira, Proximal point algorithm on Riemannian manifolds, Optimization
51 no. 2 (2002), 257–270.
[16] K. Goebel and W. A. Kirk, Iteration processes for nonexpansive mappings, Contemporary
Mathematics 21 (1983), 115–123.
[17] K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings,
Marcel Dekker, Inc., New York, 1984.
[18] A. N. Iusem and L. R. Lucambio P´erez, An extragradient-type algorithm for nonsmooth variational
inequalities, Optimization 48 no. 3 (2000), 309–332.
[19] T. Iwamiya and H. Okochi, Monotonicity, resolvents and yosida approximation on Hilbert
manifolds, Nonlinear Anal. 54 (2003), 205–214.
[20] J. Jost, Nonpositive curvature: geometric and analytic aspects, Lectures in Mathematics ETH
Zrich, Birkhuser Verlag, Basel, 1997.
[21] S. Kamimura and W. Takahashi, Approximating solutions of maximal monotone operators in
Hilbert spaces, J. Approx. Theory 13 (2000), 226–240.
[22] D. Kinderlehrer and G. Stampacchia, An introduction to variational inequalities and their
applications, Academic Press, New York, London, Toronto, Sydney, San Francisco, 1980.
[23] W. A. Kirk, Krasnoselskii’s iteration process in hyperbolic space, Numer. Funct. Anal. Optim.
4 no. 4 (1981/82), 371–381.
[24] W. A. Kirk, Geodesic Geometry and Fixed Point Theory, in: Seminar of Mathematical Analysis
(Malaga/Seville, 2002/2003), 195–225, Univ. Sevilla Secr. Publ., Seville, 2003.
[25] G. M. Korpelevich, The extragradient method for finding saddle points and other problems,
Ekonomika i Matematcheskie Metody 12 (1976), 747–756.
[26] C. Li, G. L´opez and V. Mart´ın-M´arquez, Monotone vector fields and the proximal point algorithm
on Hadamard manifolds, accepted for publication in Journal of London Mathematical
Society.
[27] C. Li, G. L´opez and V. Mart´ın-M´arquez, Iterative algorithms for nonexpansive mappings in
Hadamard manifolds, accepted for publication in Taiwanese Journal of Mathematics.
[28] G. L´opez, V. Mart´ın-M´arquez and H. K. Xu, Halpern’s Iteration for Nonexpansive Mappings,
submitted to Contemporary Mathematics.
[29] B. Martinet, R´egularisation d’in´equations variationelles par approximations successives, Rev.
Franaise Informat. Recherche Oprationnelle 4 (1970), 154–158.
[30] B. Martinet, Determination approch´ee d’un point fixe d’une application pseudo-contractante,
C. R. Acad. Sci. Paris Ser. A-B 274 (1972), 163–165.
[31] G. J. Minty, On the monoticity of the gradient of a convex function, Pacific J. Math. 14
(1964), 243–247.
[32] G. J. Minty, On some aspects of the theory of monotone operators, in: Theory and Applications
of monotone operators, (A. Ghizzetti editor), edizioni ”Oderisi”, Gubbio, Italia, 1969.
[33] J. J. Moreau, Proximit´e et dualit´e dans un espace hilbertien, Bull. Soc. Math. France 193
(1965), 273–299.
[34] S. Z. N´emeth, Monotonicity of the complementary vector field of a nonexpansive map, Acta
Math. Hungarica 84 no. 3 (1999), 189–197.
[35] S. Z. N´emeth, Monotone vector fields, Publ. Math. Debrecen 54 (1999), 437–449.
[36] S. Z. N´emeth, Geodesic monotone vector fields, Lobachevskii J. Math. 5 (1999), 13–28.
[37] S. Z. N´emeth, Five kinds of monotone vector fields, Pure Math. Appl. 9 no. 34 (1999), 417–428.
[38] S. Z. N´emeth, Variational inqualities on Hadamard manifolds, Nonlinear Anal. 52 (2003),
1491–1498.
[39] E. A. Papa Quiroz, E. Quispe C´ardenas and P. R. Oliveira, Steepest descent method for
quasiconvex minimization on Riemannian manifolds, J. Math. Anal. Appl. 341 (2008), 467–
477.
[40] E. A. Papa Quiroz and P. R. Oliveira, Proximal point methods for quasiconvex and convex
functions with Bregman distances on Hadamard manifolds, Journal of Convex Analysis 16 no.
1 (2009).
[41] D. Pascali and S. Sburlan, Nonlinear mappings of monotone type, Editura Academiei, 1978.
[42] R. R. Phelps, Convex functions, monotone operators and differentiability, in: volume 1364 of
Lectures Notes in Mathematics, Spronger-Verlag, second edition, 1993.
[43] T. Rapcs´ak, Smooth nonlinear optimization in R
n. Nonconvex optimization and its applications,
19, Kluwer Academic Publishers, Dordrecht, 1997.
[44] S. Reich, Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math.
Anal. Appl. 67 (1979), 274–276.
[45] S. Reich and I. Shafrir, Nonexpansive iterations in hyperbolic spaces, Nonlinear Anal. 15 no.
6 (1990), 537–558.
[46] R. T. Rockafellar, Monotone operators associated with sadle-functions and minimax problems,
Nonlinear Functional Analysis, Part 1, F.E. Browder ed., Symp. in Pure Math., Amer. Math.
Soc. Prov., R.I. 18 (1970), 397–407.
[47] R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control
Optim. 14 (1976), 877–898.
[48] T. Sakai, Riemannian Geometry, Translations of Mathematical Monographs 149, American
Mathematical Society, Providence, RI, 1996.
[49] I. Singer, The theory of best approximation and functional analysis, CBMS-NSF Regional Conf.
Ser. in Appl. Math., 13, SIAM, Philadelphia, PA, 1974.
[50] S. T. Smith, Optimization techniques on Riemannian manifolds, Fields Institute Communications
3, American Mathematical Society, Providence, R. I., 113–146, 1994.
[51] M. V. Solodov and B. F. Svaiter, A new projection method for variational inequality problems,
SIAM J. Control Optim. 37 no. 3 (1999), 765–776.
[52] K. T. Sturm, Probability measures on metric spaces of nonpositive curvature, in: Heat kernels
and analysis on manifolds, graphs, and metric spaces (Paris, 2002), 357–390, Contemp. Math.,
338, Amer. Math. Soc., Providence, RI, 2003.
[53] C. Udriste, Convex functions and optimization methods on Riemannian manifolds, Mathematics
and its applications, 297, Kluwer Academic Publisher, 1994.
[54] R. Walter, On the metric projection onto convex sets in Riemannian spaces, Archiv der Mathematik
25 (1974), 91–98.
[55] H. K. Xu, Iterative algorithms for nonlinear operators, Journal of London Mathematical Society
66 (2002), 240–256.
[56] E. Zheidler, Nonlinear functional analysis and applications II B, Nonlinear monotone operators
Springer-Verlag, 1990.