NONEXPANSIVE MAPPINGS AND MONOTONE VECTOR FIELDS IN HADAMARD MANIFOLDS

TitleNONEXPANSIVE MAPPINGS AND MONOTONE VECTOR FIELDS IN HADAMARD MANIFOLDS
Publication TypeJournal Article
Year of Publication2009
AuthorsMARTÍN-MARQUEZ, VICTORIA
Volume13
Issue4
Start Page633
Pagination14
Date Published2009
ISSN1083-2564
AMS49M30, 90C26
Abstract

This paper briefly surveys some recent advances in the investigation of nonexpansive mappings and monotone vector fields, focusing in the extension of basic results of the classical nonlinear functional analysis from Banach spaces to the class of nonpositive sectional curvature Riemannian manifolds called Hadamard manifolds. Within this setting, we first analyze the problem of finding fixed points of nonexpansive mappings. Later on, different classes of monotonicity for set-valued vector fields and the relationship between some of them will be presented, followed by the study of the existence and approximation of singularities for such vector fields. We will discuss about variational inequality and minimization problems in Hadamard manifolds, stressing the fact that these problems can be solved by means of the iterative approaches for monotone vector fields.

URLhttp://www.acadsol.eu/en/articles/13/4/13.pdf
Refereed DesignationRefereed
Full Text

REFERENCES
[1] J. M. Borwein and A. S. Lewis, Convex Analysis and Nonlinear Optimization, Theory and
Examples, Springer, 2006.
[2] F. E. Browder, Multi-valued monotone nonlinear mapping and duality mapping in Banach
spaces, Trans. Amer. Math. Soc. 118 (1965), 338–351.
[3] F. E. Browder, Fixed point theorems on infinite dimensional manifolds, Trans. Amer. Math.
Soc. 119 (1965), 179–194.
[4] F. E. Browder, Convergence of approximants to fixed points of nonlinear maps in Banach
spaces, Arch. Rational Mech. Anal. 24 (1967), 82–90.
[5] R. E. Bruck, A strongly convergent iterative solution of 0 ∈ U(x) for a maximal monotone
operator in Hilbert space, J. Math. Anal. Appl. 48 (1974), 114–126.
[6] R. E. Bruck and S. Reich, A general convergence principle in nonlinear functional analysis,
Nonlinear Anal. 4 no. 5 (1980), 939–950.
[7] J. X. da Cruz Neto, L. L. Lima, and P. R. Oliveira, Geodesic algorithm in Riemannian manifolds,
Balkan J. Geom. Appl. 3 (1998), 89–100.
[8] J. X. da Cruz Neto, O. P. Ferreira and L. R. Lucambio Perez, A proximal regularization of
the steepest descent method in Riemannian manifold, Balkan J. Geom. Appl. 4 (1999), 1–8.
[9] J. X. da Cruz Neto, O. P. Ferreira and P. R. Lucambio, Monotone point-to-set vector fields,
Balkan J. Geom. Appl. 5 no. 1 (2000), 69-79.
[10] J. X. da Cruz Neto, O. P. Ferreira and L. R. Lucambio P´erez, Contributions to the study of
monotone vector fields, Acta Math. Hungarica 94 no. 4 (2002), 307–320.
[11] J. X. da Cruz Neto, O.P. Ferreira, L. R. Lucambio P´erez and S. Z. N´emeth, Convexand
monotone-transformable mathematical programming problems and a proximal-like point
method, Journal of Global Optimization 35 no. 1 (2006), 53–69.
[12] M. P. DoCarmo, Riemannian Geometry, Boston: Birkhauser, 1992.
[13] O. P. Ferreira, L. R. Lucambio P´erez and S. Z. N´emeth, Singularities of monotone vector fields
and an extragradient-type algorithm, J. Global Optim. 31 (2005), 133–151.
[14] O. P. Ferreira and P. R. Oliveira, Subgradient algorithm on Riemannian manifolds, J. Optim.
Theory Appl. 97 no. 1 (1998), 93–104.
[15] O. P. Ferreira and P. R. Oliveira, Proximal point algorithm on Riemannian manifolds, Optimization
51 no. 2 (2002), 257–270.
[16] K. Goebel and W. A. Kirk, Iteration processes for nonexpansive mappings, Contemporary
Mathematics 21 (1983), 115–123.
[17] K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings,
Marcel Dekker, Inc., New York, 1984.
[18] A. N. Iusem and L. R. Lucambio P´erez, An extragradient-type algorithm for nonsmooth variational
inequalities, Optimization 48 no. 3 (2000), 309–332.
[19] T. Iwamiya and H. Okochi, Monotonicity, resolvents and yosida approximation on Hilbert
manifolds, Nonlinear Anal. 54 (2003), 205–214.
[20] J. Jost, Nonpositive curvature: geometric and analytic aspects, Lectures in Mathematics ETH
Zrich, Birkhuser Verlag, Basel, 1997.
[21] S. Kamimura and W. Takahashi, Approximating solutions of maximal monotone operators in
Hilbert spaces, J. Approx. Theory 13 (2000), 226–240.
[22] D. Kinderlehrer and G. Stampacchia, An introduction to variational inequalities and their
applications, Academic Press, New York, London, Toronto, Sydney, San Francisco, 1980.
[23] W. A. Kirk, Krasnoselskii’s iteration process in hyperbolic space, Numer. Funct. Anal. Optim.
4 no. 4 (1981/82), 371–381.
[24] W. A. Kirk, Geodesic Geometry and Fixed Point Theory, in: Seminar of Mathematical Analysis
(Malaga/Seville, 2002/2003), 195–225, Univ. Sevilla Secr. Publ., Seville, 2003.
[25] G. M. Korpelevich, The extragradient method for finding saddle points and other problems,
Ekonomika i Matematcheskie Metody 12 (1976), 747–756.
[26] C. Li, G. L´opez and V. Mart´ın-M´arquez, Monotone vector fields and the proximal point algorithm
on Hadamard manifolds, accepted for publication in Journal of London Mathematical
Society.
[27] C. Li, G. L´opez and V. Mart´ın-M´arquez, Iterative algorithms for nonexpansive mappings in
Hadamard manifolds, accepted for publication in Taiwanese Journal of Mathematics.
[28] G. L´opez, V. Mart´ın-M´arquez and H. K. Xu, Halpern’s Iteration for Nonexpansive Mappings,
submitted to Contemporary Mathematics.
[29] B. Martinet, R´egularisation d’in´equations variationelles par approximations successives, Rev.
Franaise Informat. Recherche Oprationnelle 4 (1970), 154–158.
[30] B. Martinet, Determination approch´ee d’un point fixe d’une application pseudo-contractante,
C. R. Acad. Sci. Paris Ser. A-B 274 (1972), 163–165.
[31] G. J. Minty, On the monoticity of the gradient of a convex function, Pacific J. Math. 14
(1964), 243–247.
[32] G. J. Minty, On some aspects of the theory of monotone operators, in: Theory and Applications
of monotone operators, (A. Ghizzetti editor), edizioni ”Oderisi”, Gubbio, Italia, 1969.
[33] J. J. Moreau, Proximit´e et dualit´e dans un espace hilbertien, Bull. Soc. Math. France 193
(1965), 273–299.
[34] S. Z. N´emeth, Monotonicity of the complementary vector field of a nonexpansive map, Acta
Math. Hungarica 84 no. 3 (1999), 189–197.
[35] S. Z. N´emeth, Monotone vector fields, Publ. Math. Debrecen 54 (1999), 437–449.
[36] S. Z. N´emeth, Geodesic monotone vector fields, Lobachevskii J. Math. 5 (1999), 13–28.
[37] S. Z. N´emeth, Five kinds of monotone vector fields, Pure Math. Appl. 9 no. 34 (1999), 417–428.
[38] S. Z. N´emeth, Variational inqualities on Hadamard manifolds, Nonlinear Anal. 52 (2003),
1491–1498.
[39] E. A. Papa Quiroz, E. Quispe C´ardenas and P. R. Oliveira, Steepest descent method for
quasiconvex minimization on Riemannian manifolds, J. Math. Anal. Appl. 341 (2008), 467–
477.
[40] E. A. Papa Quiroz and P. R. Oliveira, Proximal point methods for quasiconvex and convex
functions with Bregman distances on Hadamard manifolds, Journal of Convex Analysis 16 no.
1 (2009).
[41] D. Pascali and S. Sburlan, Nonlinear mappings of monotone type, Editura Academiei, 1978.
[42] R. R. Phelps, Convex functions, monotone operators and differentiability, in: volume 1364 of
Lectures Notes in Mathematics, Spronger-Verlag, second edition, 1993.
[43] T. Rapcs´ak, Smooth nonlinear optimization in R
n. Nonconvex optimization and its applications,
19, Kluwer Academic Publishers, Dordrecht, 1997.
[44] S. Reich, Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math.
Anal. Appl. 67 (1979), 274–276.
[45] S. Reich and I. Shafrir, Nonexpansive iterations in hyperbolic spaces, Nonlinear Anal. 15 no.
6 (1990), 537–558.
[46] R. T. Rockafellar, Monotone operators associated with sadle-functions and minimax problems,
Nonlinear Functional Analysis, Part 1, F.E. Browder ed., Symp. in Pure Math., Amer. Math.
Soc. Prov., R.I. 18 (1970), 397–407.
[47] R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control
Optim. 14 (1976), 877–898.
[48] T. Sakai, Riemannian Geometry, Translations of Mathematical Monographs 149, American
Mathematical Society, Providence, RI, 1996.
[49] I. Singer, The theory of best approximation and functional analysis, CBMS-NSF Regional Conf.
Ser. in Appl. Math., 13, SIAM, Philadelphia, PA, 1974.
[50] S. T. Smith, Optimization techniques on Riemannian manifolds, Fields Institute Communications
3, American Mathematical Society, Providence, R. I., 113–146, 1994.
[51] M. V. Solodov and B. F. Svaiter, A new projection method for variational inequality problems,
SIAM J. Control Optim. 37 no. 3 (1999), 765–776.
[52] K. T. Sturm, Probability measures on metric spaces of nonpositive curvature, in: Heat kernels
and analysis on manifolds, graphs, and metric spaces (Paris, 2002), 357–390, Contemp. Math.,
338, Amer. Math. Soc., Providence, RI, 2003.
[53] C. Udriste, Convex functions and optimization methods on Riemannian manifolds, Mathematics
and its applications, 297, Kluwer Academic Publisher, 1994.
[54] R. Walter, On the metric projection onto convex sets in Riemannian spaces, Archiv der Mathematik
25 (1974), 91–98.
[55] H. K. Xu, Iterative algorithms for nonlinear operators, Journal of London Mathematical Society
66 (2002), 240–256.
[56] E. Zheidler, Nonlinear functional analysis and applications II B, Nonlinear monotone operators
Springer-Verlag, 1990.