MODIFIED BERNSTEIN-SCHNABL OPERATORS ON CONVEX COMPACT SUBSETS OF LOCALLY CONVEX SPACES AND THEIR LIMIT SEMIGROUPS

TitleMODIFIED BERNSTEIN-SCHNABL OPERATORS ON CONVEX COMPACT SUBSETS OF LOCALLY CONVEX SPACES AND THEIR LIMIT SEMIGROUPS
Publication TypeJournal Article
Year of Publication2009
AuthorsMONTANO, MIRELLACAPPELLETT, DIOMEDE, SABRINA
Volume13
Issue4
Start Page609
Pagination24
Date Published2009
ISSN1083-2564
AMS41A36, 41A65, 47D03
Abstract

In this paper we introduce a sequence ${\ (M_n\ )\ _{n\geq\ n_0} }$ of positive linear operators as a modification of the Bernstein-Schnabl operators associated with a positive projection on ${ \ C(K) }$, where ${ \ K}$ is a convex compact subset of a locally convex space; moreover we study its main approximation and qualitative properties. Furthermore, we establish an asymptotic formula for those operators, and we prove that to the sequence ${\ (M_n\ )\ _{n\geq\ n_0} }$ there corresponds a uniquely determined ${ \ C_0 }$-semigroup (in some special case a Feller one) which is representable as a limit of suitable powers of the operator

URLhttp://www.acadsol.eu/en/articles/13/4/12.pdf
Refereed DesignationRefereed
Full Text

REFERENCES
[1] F. Altomare, Operatori di Lion sul prodotto di spazi compatti, semigruppi di operatori positivi
e problemi di Dirichlet, Ricerche Mat., Vol. XXVIII (1978), 1, 33-58.
[2] F. Altomare, Limit semigroups of Bernstein-Schnabl operators associated with positive projections,
Ann. Sc. Norm. Sup. Pisa, Serie IV, (16) 2 (1989), 259-279.
[3] F. Altomare and R. Amiar, Approximation by positive operators of C0-semigroups associated
with one-dimensional diffusion equations-Part I, Numer. Funct. Anal. Optim. 26 (1) (2005), 1–15.
[4] F. Altomare and M. Campiti, Korovkin-Type Approximation Theory and its Applications, De
Gruyter Studies in Mathematics 17, Walter de Gruyter, Berlin-New York, 1994.
[5] F. Altomare, M. Cappelletti Montano and S. Diomede, Degenerate elliptic operators, Feller
semigroups and modified Bernstein-Schnabl operators, preprint (2008).
[6] F. Altomare and S. Diomede, Positive operators and approximation in function spaces on
completely regular spaces, Int. J. Math. Math. Sci. 61 (2003), 3841-2871.
[7] F. Altomare, V. Leonessa and S. Milella, Continuous selections of Borel Measures and
Bernstein-Schnabl operators, Proceedings of the International Conference on Numerical Analysis
and Approximation Theory NAAT2006, Cluj-Napoca(Romania) (2007), 1-27.
[8] F. Altomare and I. Ra¸sa, Towards a characterization of a class of differential operators associated
with positive projections, Atti Sem. Mat. Fis. Universit`a Modena, Suppl. al Vol XLVI
(1998), 3-38.
[9] F. Altomare and I. Ra¸sa, Feller semigroups, Bernstein type operators and generalized convexity
associated with positive projections, Intern. Series in Numer. Math. Vol. 132, 9-32 Birkh¨auserVerlag,
Basel, 1999.
[10] F. Altomare and I. Ra¸sa, On some classes of diffusion equations and related approximation
problems, in Trends and Applications in Constructive Approximation (M.G. de Bruin, D.H.
Mache and J. Szabados Eds.), Intern. Series of Numerc. Math. Vol. 151, 13-26, Birkh¨auserVerlag,
Basel, 2005.
[11] M. Bl¨umlinger, Approximation durch Bernsteinoperatoren auf kompakten konvexen mengen,
Osterreich. Akad. Wiss. Math.-Natur.kl. Sitzungsberg. II 196 (1987), no. 4-7, 181-215.
[12] M. Campiti, Recursive Bernstein operators and degenerate diffusion problems , Acta Sci.
Math., 68 (2002), 179-201.
[13] M. Campiti and G. Metafune, Approximation of solution of some degenerate parabolic problems,
Numer. Funct. Anal. Optim., 17 (1-2) (1996), 23-35.
[14] M. Campiti and I. Ra¸sa, Qualitative properties of a class of Fleming-Viot operators , Acta
Math. Hungar. 103 (1-2) (2004), 55-69.
[15] S.N. Ethier, A Class of Degenerate Diffusion Processes Occurring in Population Genetics ,
Comm. Pure Appl. Math. 23 (1976), 483-493.
[16] M.W. Grossmann, Note on a generalized Bohman-Korovkin theorem, J. Math. Anal. Appl.,
45 (1974), 43-46.
[17] R. Nagel (Ed.), One-parameter semigroups of positive operators, Lecture Notes in Math. 1184,
Springer-Verlag, Berlin, 1986.
[18] T. Nishishiraho, Quantitative theorems on approximations processes of positive linear operators,
in: Multivariate Approximation Theory II (Proc. Conf. Math. Res. Inst. Oberwolfach
1982; ed. by W. Schempp and K. Zeller), 297-311.
[19] T. Nishishiraho, Convergence of positive linear appproximation processes, Tˆohoku Math. Journ.
35 (2) (1983), no.3, 441-458.
[20] T. Nishishiraho, The order of approximation by positive linear operators, Tˆohoku Math. Journ.
40 (1988), no. 4, 617-632.
[21] A. Pazy, Semigroups of linear operators and applications to partial differential equations,
Springer-Verlag, Berlin, 1983.
[22] M.A. Jim´enes Pozo, D´eformation de la convexit´e et th`eor´ems du type Korovkin, C.R. Acad.
Sci. Paris, Ser. A 290 (1980), 213-215.
[23] I. Ra¸sa, Altomare projections and Lototsky-Schnabl operators, Suppl. Rend. Circ. Mat.
Palermo 33 (1993), 439-451.
[24] I. Ra¸sa, Feller semigroups, elliptic operators and Altomare projections, Rend. Circ. Mat.
Palermo, Serie II, Suppl. 68 (2002), 133-155.
[25] I. Ra¸sa, Positive operators, Feller semigroups and diffusion equations associated with Altomare
projections, Conf. Sem. Mat. Univ. Bari 284 (2002), 1-26.
[26] R. Schnabl, Eine Verallgemeinerung der Bernsteinpolynome, Math. Ann., 179 (1968), 74-82.
[27] K. Taira, Diffusion processes and partial differential equations, Academic Press, Boston, San
Diego, London, Tokyo, 1988.
[28] H. F. Trotter, Approximation of semigroup of operators, Pacific J. Math. 8 (1958), 887-919.