PERTURBATIONS OF BERNSTEIN-DURRMEYER OPERATORS ON THE SIMPLEX AND BEST APPROXIMATION PROPERTIES

TitlePERTURBATIONS OF BERNSTEIN-DURRMEYER OPERATORS ON THE SIMPLEX AND BEST APPROXIMATION PROPERTIES
Publication TypeJournal Article
Year of Publication2009
AuthorsCAMPITI, MICHELE, TACELLI, CRISTIAN
Volume13
Issue4
Start Page597
Pagination11
Date Published2009
ISSN1083-2564
AMS34A45, 41A36, 47A58, 47E05
Abstract

We study some modifications of Bernstein-Durrmeyer operators on a d-dimensional simplex in order to satisfy a best approximation property and an integro-differential Voronovskajatype formula. Some applications concerning the representation of the solution of suitable evolution problems are also considered.

URLhttp://www.acadsol.eu/en/articles/13/4/11.pdf
Refereed DesignationRefereed
Full Text

REFERENCES
[1] A. Albanese, M. Campiti, E. Mangino, Approximation formulas for C0-semigroups and
their resolvent operators, J. Appl. Funct. Anal. 1 (2006), 343–358.
[2] A. Albanese, M. Campiti, E. Mangino, Regularity properties of semigroups generated by
some Fleming-Viot type operators, J. Math. Anal. Appl. 335 (2007), 1259–1273.
[3] F. Altomare, M. Campiti, Korovkin-type Approximation Theory and its Applications,
De Gruyter Studies in Mathematics 17 W. De Gruyter, Berlin-New York, 1994.
[4] E. Berdysheva, K. Jetter, J. Stockler, ¨ New polynomial preserving operators on simplices:
direct results, J. Approx. Theory 131 (2004), 59–73.
[5] H. Berens, H. J. Schmid, Y. Xu, Bernstein-Durrmeyer polynomials on a simplex, J. Approx.
Theory 68 (1992), 247–261.
[6] H. Berens, Y. Xu, On Bernstein-Durrmeyer polynomials with Jacobi weights, in: C. K.
Chui (Ed.), Approximation Theory and Functional Analysis, Academic Press, Boston, 1991, 25–46.
[7] H. Berens, Y. Xu, On Bernstein-Durrmeyer polynomials with Jacobi weights: the cases
p = 1 and p = ∞, Israel Math. Conf. Proc. 4 (1991), 51–62.
[8] D. Braess, C. Schwab, Approximation on simplices with respect to Sobolev weighted norms,
J. Approx. Theory 103 (2000), 329–337.
[9] S. Cerrai, Ph. Cl´ement, On a class of degenerate elliptic operators arising from the
Fleming-Viot processes, J. Evolution Equ. 1 (2001), 243–276.
[10] M. Campiti, I. Ras¸a, On a best extension property with respect to a linear operator, J. Appl.
Anal. 64 (1997), 189–202.
[11] M. Campiti, C. Tacelli, Rate of convergence in Trotter’s approximation theorem, Constr.
Approx. 28 (2008), no. 3, 333–341.
[12] W. Chen, Z. Ditzian, K. Ivanov, Strong converse inequality for the Bernstein-Durrmeyer
operator, J. Approx. Theory 75 (1993), 25–43.
[13] M.-M. Derriennic, Sur l’approximation de fonctions int´egrables sur [0, 1] par des polynˆomes
de Bernstein modifi´es, J. Approx. Theory 31 (1981), 325–343.
[14] M.-M. Derriennic, Polynˆomes de Bernstein modifi´es sur un simplex T de R
l probl`eme des
moments, in: Proc. Polynˆomes Orthogonaux et Applications, Bar-le-Duc, Lect. Notes Math.
1171 Springer, Berlin, 1984, 296–301.
[15] M.-M. Derriennic, Linear combinations of derivatives of Bernstein-type polynomials on a
simplex, Colloq. Math. Soc. J´anos Bolyai 58 (1990), 197–220.
[16] Z. Ditzian, Multidimensional Jacobi-type Bernstein-Durrmeyer operators, Acta Sci. Math.
(Szeged) 60 (1995), 225–243.
[17] F. Dunkl, Y. Xu Orthogonal Polynomials of Several Variables, Encyclopedia of Mathematics
and its Applications 81 Cambridge University Press, Cambridge, 2001.
[18] J.-L. Durrmeyer, Une formule d’inversion de la transform´ee de Laplace: Applications `a la
th´eorie des moments, Th`ese de 3e cycle, Facult´e des Sciences de l’Universit´e de Paris, 1967.
[19] R. Palt ˘ anea, ˘ Sur un op´erateur polynomial d´efini sur l’ensemble des fonctions int´egrables,
Univ. “Babe¸s-Bolyai”, Cluj-Napoca 83 (1983), no. 2, 101–106.
[20] K. Sato, Diffusion operators in population genetics and convergence of Markov chains, Proc.
Internat. Conf. on Measure Theory, Applications to Stoch. Analysis (ed. G. Kallianpur and
D. Kolzow), Lecture Notes in Math. 695 (1978), Springer Verlag, Berlin, 127–137.
[21] N. Shimakura, Equations diff´erentielles provenant de la g´en´etique des populations, Tohoku
Math. J. 77 (1977), 287–318.
[22] N. Shimakura, Formulas for diffusion approximations of some gene frequency models, J.
Math. Kyoto Univ. 21 (1981), no. 1, 19–45.
[23] H. F. Trotter, Approximation of semi-groups of operators, Pac. J. Math. 8 (1958), 887–919.
[24] S. Waldron, A generalised beta integral and the limit of the Bernstein-Durrmeyer operator
with Jacobi weights, J. Approx. Theory 122 (2003), no. 1, 141–150.
[25] D.-X. Zhou, Uniform approximation by some Durrmeyer operators, J. Approx. Theory Appl.
6 (1990), 87–100.