REFERENCES

[1] J. R. Graef, L. Kong and H. Wang, A periodic boundary value problem with vanishing Green’s

function, Appl. Math. Lett., 21 (2008), 176–180.

[2] D. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, 1988.

[3] E. Hewitt and K. Stromberg, Real and Abstract Analysis, Springer-Verlag, (1965).

[4] M. A. Krasnosel’ski˘ı and P. P. Zabre˘ıko, Geometrical Methods of Nonlinear Analysis, SpringerVerlag, Berlin, 1984.

[5] K. Q. Lan and J. R. L. Webb, Positive solutions of semilinear differential equations with singularities,

J. Differential Equations, 148, (1998), 407–421.

[6] K. Q. Lan, Multiple positive solutions of Hammerstein integral equations and applications to

periodic boundary value problems, Appl. Math. Comput. 154 (2004), 531–542.

[7] R. Ma, A survey on nonlocal boundary value problems, Applied Mathematics E-Notes, 7 (2007), 257–279.

[8] R. H. Martin, Nonlinear operators and differential equations in Banach spaces, Wiley, New York, (1976).

[9] H. H. Schaefer, Some spectral properties of positive linear operators, Pacific J. Math., 10 (1960), 1004–1019.

[10] P. J. Torres, Existence and stability of periodic solutions for second-order semilinear differential

equations with a singular nonlinearity, Proc. Roy. Soc. Edinburgh Sect. A 137 (2007), 195–201.

[11] H. Wang, Positive periodic solutions of functional differential equations, J. Differential Equations 202 (2004), 354–366.

[12] J. R. L. Webb and G. Infante, Positive solutions of nonlocal boundary value problems: a unified

approach, J. London Math. Soc., (2) 74 (2006), 673–693.

[13] J. R. L. Webb and K. Q. Lan, Eigenvalue criteria for existence of multiple positive solutions of

nonlinear boundary value problems of local and nonlocal type, Topol. Methods Nonlinear Anal.,

27 (2006), 91–116.

[14] J. R. L. Webb, G. Infante and D. Franco, Positive solutions of nonlinear fourth order boundary

value problems with local and nonlocal boundary conditions, Proc. Roy. Soc. Edinburgh, 138A

(2008), 427–446.