REFERENCES
[1] R. Agarwal, M. Filippakis, D. O’Regan, N. Papageorgiou, Twin positive solutions for pLaplacian
nonlinear Neumann problems via variational and degree theoretical methods. J. Nonlinear Convex Anal., 9 (2008), 1–23.
[2] R. Agarwal, D. O’Regan, An Introduction to Ordinary Differential Equations, Universitext, Springer, New York, 2008.
[3] J. A. Aguilar, I. Peral, On an elliptic equation with exponential growth Rend, Semi. Mat. Univ. Padova, 96 (1996), 143–175.
[4] A. Anane, Simplicit´e et isolation de la premiere valeur propre dup-laplacien avec poids, C.R. Acad. Sci. S´erie I, Paris, 305 (1987), 725–728.
[5] G. Barles, Remarks on uniqueness results of the first eigenvalue of the p-Laplacian, Annales
de la Facult´e des Sciences de Toulouse, 5e serie, 9 (1988), 65–75.
[6] H. Br´ezis, Analyse Fonctionnelle, Th´eorie et Applications, Masson, Paris, 1983.
[7] F. Cırstea, V. Radulescu, Existence and uniqueness of positive solutions to a semilinear elliptic problem in R
N , J. Math. Anal. Appl. 229 (1999), 417–425.
[8] M. Cuesta, Eigenvalue for the p-Laplacian with indefinite weights, Electronic Journal of Differential
Equations 2001 (2001) 1–9.
[9] M. Cuesta, Existence results for quasilinear problems via ordered sub and supersolutions,
Annales de la Facult´e des Sciences de Toulouse, 6e serie 6 (1997), 591–608.
[10] E. Di Benedetto, C1 local regularity of weak solutions of degenerate elliptic equations, Nonlinear
Analysis. Theory, Methods and Applications 7 (1983), 827–850.
[11] P. Dr`abek, J. Milota, Methods of Nonlinear Analysis, Applications to Differential Equations, Birkh¨auser Verlag, 2007.
[12] L. Lassoued, Existence of regular solutions to −∆u = V (x)eu in a bounded domains of Rn,
n ≥ 1, PanAmerican Math. J. 6 (1996), 1–23.
[13] L. Lassoued, Positive solutions for elliptic systems without variational structure, Communications
in Contemporary Mathematics 4 (2002), 161–178.
[14] I. Peral, Multiplicity of solutions for the p-Laplacian, Second School of Nonlinear Functional
Analysis and Applications to Differential Equations.
[15] V. R˘adulescu, Qualitative Analysis of Nonlinear Elliptic Partial Differential Equations: Monotonicity,
Analytic, and Variational Methods, Contemporary Mathematics and Its Applications,
vol. 6, Hindawi Publ. Corp., 2008.
[16] V. Radulescu, D. Repovs, Perturbation effects in nonlinear eigenvalue problems, Nonlinear
Analysis: Theory, Methods and Applications, in press.
[17] G. Stampacchia, Equations Elliptiques du Second Ordre a Coefficients Discontinus, Presses de
L’Universit´e de Montreal, 1966.
[18] M. Struwe, Variational Methods. Applications to Nonlinear Partial Differential Equations and
Hamiltonian Systems, Springer Verlag, Berlin, 1990.
[19] P. Tolksdorff, Regularity for a more general class of quasilinear elliptic equations, J. Diff.
Equations 51 (1984), 126–150.