**REFERENCES**

[1] D. Arcoya and S. Villegas, Nontrivial solutions for a Neumann problem with a nonlinear term

asymptotically linear at −∞ and superlinear at +∞, Math. Z. 219 (1995), 499–513.

[2] T. Bartsch and S. Li, Critical point theory for asymptotically quadratic functionals and applications

to problems with resonance, Nonlinear Anal. 28 (1997), 419–441.

[3] H. Brezis and L. Nirenberg, H1 versus C 1 local minimizers, C. R. Acad. Sci. Paris S´er. I Math. 317 (1993), 465–472.

[4] N. P. C´ac, On nontrivial solutions of a Dirichlet problem whose jumping nonlinearity crosses a multiple eigenvalue, J. Differential Equations 80 (1989), 379–404.

[5] K.-C. Chang, Infinite-Dimensional Morse Theory and Multiple Solution Problems, Birkhauser,

Boston, 1993.

[6] D. G. Costa and C. A. Magalh˜aes, Variational elliptic problems which are nonquadratic at

infinity, Nonlinear Anal. 23 (1994), 1401–1412.

[7] E. N. Dancer and Z. Zhang, Fuˇc´ık spectrum, sign-changing, and multiple solutions for semilinear

elliptic boundary value problems with resonance at infinity, J. Math. Anal. Appl. 250 (2000), 449–464.

[8] G. Fei, On periodic solutions of superquadratic Hamiltonian systems, Electron. J. Differential Equations 2002, No. 8, 12 pp.

[9] D. G. de Figueiredo and B. Ruf, B. On a superlinear Sturm-Liouville equation and a related

bouncing problem, J. Reine Angew. Math. 421 (1991), 1–22.

[10] L. Gasi´nski and N. S. Papageorgiou, Nonlinear Analysis, Chapman & Hall/CRC, Boca Raton, 2006.

[11] A. Granas and J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003.

[12] C. A. Magalh˜aes, Multiplicity results for a semilinear elliptic problem with crossing of multiple

eigenvalues, Differential Integral Equations 4 (1991), 129–136.

[13] J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Springer-Verlag, New York, 1989.

[14] D. Motreanu, V. V. Motreanu and N. S. Papageorgiou, A degree theoretic approach for multiple

solutions of constant sign for nonlinear elliptic equations, Manuscripta Math. 124 (2007), 507– 531.

[15] D. Motreanu, V. V. Motreanu and N. S. Papageorgiou, Existence and multiplicity of solutions

for asymptotically linear, noncoercive elliptic equations, Monatsh. Math., in press.

[16] F. O. de Paiva, Multiple solutions for a class of quasilinear problems, Discrete Contin. Dyn.

Syst. 15 (2006), 669–680.

[17] R. S. Palais, Homotopy theory of infinite dimensional manifolds, Topology 5 (1966), 1–16.

[18] K. Perera, Existence and multiplicity results for a Sturm-Liouville equation asymptotically

linear at −∞ and superlinear at +∞, Nonlinear Anal. 39 (2000), 669–684.

[19] K. Perera, Critical groups of critical points produced by local linking with applications, Abstr. Appl. Anal. 3 (1998), 437–446.

[20] M. Schechter, The Fuˇc´ık spectrum, Indiana Univ. Math. J. 43 (1994), 1139–1157.

[21] J. L. V´azquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim. 12 (1984), 191–202.