ON THE NEUMANN PROBLEM WITH SINGULAR AND SUPERLINEAR NONLINEARITIES

TitleON THE NEUMANN PROBLEM WITH SINGULAR AND SUPERLINEAR NONLINEARITIES
Publication TypeJournal Article
Year of Publication2009
AuthorsCHABROWSKI, J
Volume13
Issue3
Start Page327
Pagination13
Date Published2009
ISSN1083-2564
AMS35J35, 35J50, 35J67
Abstract

We establish the existence of two distinct solutions for problem (1.1) for small values of a parameter λ > 0 in a subcritical case. This is obtained as a combination of approximation and variational methods. In a critical case we show the existence of at least one solution.

URLhttp://www.acadsol.eu/en/articles/13/3/5.pdf
Refereed DesignationRefereed
Full Text

REFERENCES
[1] H. Berestycki, I. Capuzzo-Dolcetta and L. Nirenberg, Variational methods for indefinite superlinear
homogeneous elliptic problems, NoDEA 2(1995), 553–572.
[2] M. M. Coclite and G. Palmieri, On a singular nonlinear Dirichlet problem, Comm. Partial
Diff. Equations 14(1989), 1315–1327.
[3] M. G. Crandal, P.H. Rabinowitz and L. Tartar, On a Dirichlet problem with a singular nonlinearity,
Comm. Partial Diff. Equations 2(1977), 193–222.
[4] Y. Haitao, Multiplicity and asymptotic behavior of positive solutions for a singular emilinear
elliptic problem, J. Diff. Equations 189(2003), 487–512.
[5] J. Hern´andez, F. J. Mancebo and J. M. Vega, Positive solutions for singular elliptic equations,
Proc. Royal Soc. Edin. 137A(2007), 42–62.
[6] N. Hirano, C. Saccon and N. Shioji, Existence of multiple positive solutions for singular elliptic
problems with concave and convex nonlinearities, Adv. Diff. Equations 9(2004), 197–220.
[7] N. Hirano, C. Saccon and N. Shioji, Brezis-Nirenberg type theorems and multiplicity of solutions
for a singular elliptic problem, J. Diff. Equations 245(8)(2008), 1197–2037.
[8] A. V. Lair and A. W. Shaker, Classical and weak solutions of a singular semilinear elliptic
problem, J. Math. Anal. Appl. 211(1997), 193–222.
[9] A. C. Lazer and P. J. McKenna, On a singular nonlinear elliptic boundary-value problem, Proc.
Amer. Math. Soc. 111(1991), 721–730.

[10] G. Stampacchia, Equations elliptiques du second ordre `a coefficients discon ´ tinus, Les Presses de l’Universite de Montreal (1966).

[11] Sun Yijing, Wu Shaoping and Long Yiming, Combined effects of singular and superlinear
nonlinearities in some singular boundary value problems, J. Diff. Equations 176(2007), 511–531.
[12] Sun Yijing and Li Shujie, Some remarks on a superlinear-singular problem, estimates of λ∗, Nonlinear Analysis (2007) DOI: 10.1016/j.na.2007.08.037
[13] Xu-Jia Wang, Neumann problems of semilinear elliptic equations involving critical Sobolev
exponents, J. Diff. Equations 93(1991), 283–310.
[14] Z. Zhang and J. Yu, On a singular nonlinear Dirichlet problem with a convection term, SIAM
J. Math. Anal. 32(2000), 916–927