REFERENCES

[1] Y. Q. Chen, On the semimonotone operator theory and applications, J. Math. Anal. Appl. 231 (1999), 177–192.

[2] F. H. Clarke, Optimization and Nonsmooth Analysis, John Wiley & Sons, New York, 1983.

[3] Y. P. Fang and N. J. Huang, Variational-like inequalities with generalized monotone mappings

in Banach Spaces, J. Optim. Theory Appl. 118 (2003), 327–338.

[4] G. Fichera, Problemi electrostatici con vincoli unilaterali: il problema de Signorini con ambigue

condizioni al contorno, Mem. Acad. Naz. Lincei 7 (1964), 91–140.

[5] G. J. Hartman and G. Stampacchia, On some nonlinear elliptic differential equations, Acta Math. 112 (1966), 271–310.

[6] S. Karamardian and S. Schaible, Seven kinds of monotone maps, J. Optim. Theory Appl. 66 (1990), 37–46.

[7] S. Karamardian, S. Schaible and J. P. Crouzeix, Characterizations of generalized monotone

maps, J. Optim. Theory Appl. 76 (1993), 399–413.

[8] J. L. Lions and G. Stampacchia, Variational inequalities, Comm. Pure Appl. Math. 20 (1967), 493–519.

[9] D. Motreanu and P. D. Panagiotopoulos, Minimax Theorems and Qualitative Properties of

the Solutions of Hemivariational Inequalities and Applications, Kluwer Academic Publishers,

Nonconvex Optimization and its Applications, vol. 29, Boston/Dordrecht/London, 1999.

[10] D. Motreanu and V. R˘adulescu, Existence results for inequality problems with lack of convexity,

Numer. Funct. Anal. Optimiz. 21 (2000), 869–884.

[11] D. Motreanu and V. R˘adulescu, Variational and Non-variational Methods in Nonlinear Analysis

and Boundary Value Problems, Kluwer Academic Publishers, Boston/Dordrecht/London, 2003.

[12] Z. Naniewicz and P. D. Panagiotopoulos, Mathematical Theory of Hemivariational Inequalities

and Applications, Marcel Dekker, New York, 1995.

[13] P. D. Panagiotopoulos, Hemivariational Inequalities: Applications to Mechanics and Engineering,

Springer-Verlag, New York/Boston/Berlin, 1993.

[14] P. D. Panagiotopoulos, Noconvex energy functions. Hemivariational inequalities and substationarity

principles, Acta Mechanica 42 (1983), 160–183.

[15] P. D. Panagiotopoulos, Hemivariational inequalities and their applications, in: Topics in Nonsmooth

Mechanics, (Ed:) J. J. Moreau, P. D. Panagiotopoulos and G. Strang, Birkh¨auserVerlag, Basel, (1988).

[16] P. D. Panagiotopoulos, Inequality Problems in Mechanics and Applications. Convex and Nonconvex

Energy Functionals, Birkh¨auser-Verlag, Basel/Boston, 1985.

[17] P. D. Panagiotopoulos, M. Fundo and V. R˘adulescu, Existence theorems of HartmanStampacchia

type for hemivariational inequalities and applications, J. Global Optim. 15 (1999), 41–54.

[18] V. R˘adulescu, Analyse de Quelques Probl`emes aux Limites Elliptiques Non Lin´eaires, Habilitation

`a Diriger des Recherches, Universit´e Pierre et Marie Curie (Paris VI), 2003.

[19] V. R˘adulescu, Qualitative Analysis of Nonlinear Elliptic Partial Differential Equations: Monotonicity,

Analytic, and Variational Methods, Contemporary Mathematics and Its Applications,

vol. 6, Hindawi Publ. Corp., 2008.

[20] E. Tarafdar, A fixed point theorem equivalent to the Fan-Knaster-Kuratowski-Mazurkiewicz

theorem, J. Math. Anal. Appl. 128 (1987), 352–363.

[21] R. U. Verma, On generalized variational inequalities involving relaxed Lipschitz and relaxed

monotone operators, J. Math. Anal. Appl. 213 (1997), 387–392.