REFERENCES
[1] S. Adly, G. Buttazzo, and M. Th´era, Critical points for nonsmooth energy functions and
applications, Nonlinear Anal. 32 (1998), 711–718.
[2] G. Barletta and S. A. Marano, The structure of the critical set in the mountain-pass theorem
for nondifferentiable functions, Differential Integral Equations 16 (2003), 1001–1012.
[3] G. Bonanno and P. Candito, Non-differentiable functionals and applications to elliptic problems
with discontinuous nonlinearities, J. Differential Equations 224 (2008), 3031–3959.
[4] G. Bonanno and S.A. Marano, On the structure of the critical set of non-differentiable functions
with a weak compactness condition, submitted for publication.
[5] H. Br´ezis and L. Nirenberg, Remarks on finding critical points, Comm. Pure. Appl. Math. 44
(1991), 939–963.
[6] P. Candito, R. Livrea, and D. Motreanu, Z2-symmetric critical point theorems for nondifferentiable
functions, Glasgow Math. J. 50 (2008), 447–466.
[7] P. Candito, S. A. Marano, and D. Motreanu, Critical poits for a class of non-differentiable
functions and applications, Discrete Contin. Dyn. Syst. 13 (2005), 175–194.
[8] J. Chabrowski, Variational Methods for Potential Operator Equations, de Gruyter Ser. Nonlinear
Anal. Appl. 24, de Gruyter, Berlin, 1997.
[9] K.-C. Chang, Variational methods for nondifferentiable functions and their applications to
partial differential equations, J. Math. Anal. Appl. 80 (1981), 102–129.
[10] F.H. Clarke, Optimization and Nonsmooth Analysis, Classics Appl. Math. 5, SIAM, Philadelphia,
1990.
[11] J.-N. Corvellec, Quantitative deformation theorems and critical point theory, Pacific J. Math.
187 (1999), 263–279.
[12] I. Ekeland, Convexity Methods in Hamiltonian Mechanics, Ergeb. Math. Grenzgeb. (3) 19,
Springer, Berlin, 1990.
[13] G. Fang, The structure of the critical set in the general mountain pass principle, Ann. Fac.
Sci. Toulouse Math. 3 (1994), 345–362.
[14] L. Gasi´nski and N.S. Papageorgiou, Nonsmooth Critical Point Theory and Nonlinear Boundary
Value Problems, Ser. Math. Anal. Appl. 8, Chapman and Hall/CRC Press, Boca Raton, 2005.
[15] N. Ghoussoub, A min-max principle with a relaxed boundary condition, Proc. Amer. Math.
Soc. 117 (1993), 439–447.
[16] N. Ghoussoub, Duality and Perturbation Methods in Critical Point Theory, Cambridge Tracts
in Math. 107, Cambridge Univ. Press, Cambridge, 1993.
[17] N. Ghoussoub and D. Preiss, A general mountain pass principle for locating and classifyng
critical points, Ann. Inst. H. Poincar´e Anal. Non Lin´eaire 6 (1989), 321–330.
[18] Y. Jabri, The Mountain Pass Theorem: Variants, Generalizations and some Applications,
Encyclopedia Math. Appl., Cambridge Univ. Press, Cambridge, 2003.
[19] N.C. Kourogenis and N.S. Papageorgiou, Nonsmooth critical point theory and nonlinear elliptic
equations at resonance, J. Austral. Math. Soc. Ser. A 69 (2000), 245–271.
[20] R. Livrea and S.A. Marano, Existence and classification of critical points for nondifferentiable
functions, Adv. Differential Equations 9 (2004), 961–978.
[21] R. Livrea and S.A. Marano, A min-max principle for non-differentiable functions with a weak
compactness condition, Comm. Pure Appl. Anal. 8, 1019–1029.
[22] R. Livrea, S. A. Marano, and D. Motreanu, Critical points or nondifferentiable functions in
presence of splitting, J. Differential Equations 226 (2006), 704–725.
[23] S. A. Marano and G. Molica Bisci, Multiplicity results for a Neumann problem with p-Laplacian
and non-smooth potential, Rend. Circ. Mat. Palermo (2) 55 (2006), 113–122.
[24] S. A. Marano and D. Motreanu, A deformation theorem and some critical points results for
non-differentiable functions, Topol. Methods Nonlinear Anal. 22 (2003), 139–158.
[25] S.A. Marano and D. Motreanu, Critical points of non-smooth functions with a weak compactness
condition, submitted for publication.
[26] S.A. Marano and N.S. Papageorgiou, On a Neumann problem with p-Laplacian and nonsmooth
potential, Differential Integral Rquations 19 (2006), 1301–1320.
[27] G. Molica Bisci, Some remarks on a recent critical point result of nonsmooth analysis, Matematiche
(Catania), in press.
[28] D. Motreanu and P. D. Panagiotopoulos, Minimax Theorems and Qualitative Properties of the
Solutions of Hemivariational Inequalities, Nonconvex Optim. Appl. 29, Kluwer, Dordrecht,
1998.
[29] D. Motreanu and V. Radulescu, Variational and Non-Variational Methods in Nonlinear Analysis
and Boundary Value Problems, Nonconvex Optim. Appl. 67, Kluwer, Dordrecht, 2003.
[30] P. D. Panagiotopoulos, Hemivariational Inequalities. Applications in Mechanics and Engeneering,
Springer, Berlin, 1993.
[31] P. Pucci and J. Serrin, A mountain pass theorem, J. Differential Equations 63 (1985), 142–149.
[32] P. Pucci and J. Serrin, Extensions of the mountain pass theorem, J. Funct. Anal. 59 (1984),
185–210.
[33] P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential
Equations, CBMS Reg. Conf. Ser. Math. 65, Amer. Math. Soc., Providence, RI, 1986.
[34] V. Radulescu, Mountain pass theorem for non-differentiable functions and applications, Proc.
Japan Acad. Ser. AMath. Sci. 69 (1993), 193–198.
[35] M. Schechter, Linking Methods in Critical Point Theory, Birk¨auser, Boston, 1999.
[36] M. Struwe, Variational Methods. Applications to Nonlinear Partial Differential Equations and
Hamiltonian Systems, Second Edition, Ergeb. Math. Grenzgeb 34, Springer-Verlag, Berlin,
1996.
[37] A. Szulkin, Minimax principles for lower semicontinuous functions and applications to nonlinear
boundary value problems, Ann. Inst. Henri Poincar´e 3 (1986), 77–109.