CRITICAL GROUPS OF FINITE TYPE FOR FUNCTIONALS DEFINED ON BANACH SPACES

TitleCRITICAL GROUPS OF FINITE TYPE FOR FUNCTIONALS DEFINED ON BANACH SPACES
Publication TypeJournal Article
Year of Publication2009
AuthorsDEGIOVANNI, MARCO
Volume13
Issue3
Start Page395
Pagination16
Date Published2009
ISSN1083-2564
AMS58E05
Abstract

For a suitable class of functionals defined on Banach spaces, we prove that each isolated critical point has critical groups of finite type.

URLhttp://www.acadsol.eu/en/articles/13/3/10.pdf
Refereed DesignationRefereed
Full Text

REFERENCES
[1] N. Bourbaki, El´ements de Math´ematique. Topologie G´en´erale. Chapitres 5 `a 10 ´ , Hermann,
Paris, 1974.
[2] F. E. Browder, Fixed point theory and nonlinear problems, Bull. Amer. Math. Soc. (N.S.) 9
(1983), 1–39.
[3] I. Campa and M. Degiovanni, Subdifferential calculus and nonsmooth critical point theory,
SIAM J. Optim. 10 (2000), 1020–1048.
[4] K.-C. Chang, Infinite-dimensional Morse Theory and Multiple Solution Problems, Progress in
Nonlinear Differential Equations and their Applications, 6, Birkh¨auser Boston Inc., Boston,
MA, 1993.
[5] S. Cingolani and G. Vannella, Critical groups computations on a class of Sobolev Banach spaces
via Morse index, Ann. Inst. H. Poincar´e Anal. Non Lin´eaire 20 (2003), 271–292.
[6] S. Cingolani and G. Vannella, Marino-Prodi perturbation type results and Morse indices of
minimax critical points for a class of functionals in Banach spaces, Ann. Mat. Pura Appl. (4)
186 (2007), 157–185.
[7] J.-N. Corvellec, Morse theory for continuous functionals, J. Math. Anal. Appl. 196 (1995),
1050–1072.
[8] J.-N. Corvellec, On the second deformation lemma, Topol. Methods Nonlinear Anal. 17 (2001),
55–66.
[9] J.-N. Corvellec and A. Hantoute, Homotopical stability of isolated critical points of continuous
functionals, in: Calculus of Variations, Nonsmooth Analysis and Related Topics, (Ed.:
Degiovanni and Ioffe), Set-Valued Anal. 10 (2002), 143–164.
[10] E. De Giorgi, A. Marino, and M. Tosques, Problemi di evoluzione in spazi metrici e curve di
massima pendenza, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 68 (1980),
180–187.
[11] M. Degiovanni and M. Marzocchi, A critical point theory for nonsmooth functionals, Ann. Mat.
Pura Appl. (4) 167 (1994), 73–100.
[12] M. Degiovanni, M. Marzocchi, and V. D. R˘adulescu, Multiple solutions of hemivariational
inequalities with area-type term, Calc. Var. Partial Differential Equations 10 (2000), 355–387.
[13] M. Degiovanni and F. Schuricht, Buckling of nonlinearly elastic rods in the presence of obstacles
treated by nonsmooth critical point theory, Math. Ann. 311 (1998), 675–728.
[14] J. Dugundji and A. Granas, Fixed Point Theory, Springer Monographs in Mathematics,
Springer-Verlag, New York, 2003.
[15] S.-T. Hu, Theory of Retracts, Wayne State University Press, Detroit, 1965.
[16] A. Ioffe and E. Schwartzman, Metric critical point theory. I. Morse regularity and homotopic
stability of a minimum, J. Math. Pures Appl. (9) 75 (1996), 125–153.
[17] G. Katriel, Mountain pass theorems and global homeomorphism theorems, Ann. Inst. H.
Poincar´e Anal. Non Lin´eaire 11 (1994), 189–209.
[18] C. Li, S. Li, and J. Liu, Splitting theorem, Poincar´e-Hopf theorem and jumping nonlinear
problems, J. Funct. Anal. 221 (2005), 439–455.
[19] J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Applied Mathematical
Sciences, 74, Springer-Verlag, New York, 1989.
[20] R. S. Palais, Homotopy theory of infinite dimensional manifolds, Topology 5 (1966), 1–16.
[21] E. H. Spanier, Algebraic Topology, McGraw-Hill Book Co., New York, 1966.
[22] A. J. Tromba, A general approach to Morse theory, J. Differential Geometry 12 (1977), 47–85.
[23] K. Uhlenbeck, Morse theory on Banach manifolds, J. Functional Analysis 10 (1972), 430–445.
[24] J. E. West, Mapping Hilbert cube manifolds to ANR’s: a solution of a conjecture of Borsuk,
Ann. Math. (2) 106 (1977), 1–18.
[25] J. H. C. Whitehead, Combinatorial homotopy. I, Bull. Amer. Math. Soc. 55 (1949), 213–245.