RATE OF CONVERGENCE F TWO-DIMENSIONAL ANALOGOUE OF BASKAKOV OPERATORS

TitleRATE OF CONVERGENCE F TWO-DIMENSIONAL ANALOGOUE OF BASKAKOV OPERATORS
Publication TypeJournal Article
Year of Publication2009
AuthorsWALCZAK, ZBIGNIEW, MOHAPATRA, RN
Secondary TitleCommunications in Applied Analysis
Volume13
Issue1
Start Page105
Pagination110
Date Published01/2009
Type of Workscientific: mathematics
ISSN1083–2564
AMS41A36
Abstract

The aim of this paper is to study the rate of convergence of the two-dimensional generalization of the Baskakov operators.

URLhttp://www.acadsol.eu/en/articles/13/1/10.pdf
Short TitleBASKAKOV OPERATORS
Refereed DesignationRefereed
Full Text

REFERENCES

[1] V. Baskakov, An example of sequence of linear operators in the space of continuous functions, Dokl. Akad. Nauk. SSSR 113(1957), 249–251.
[2] M. Becker, Global approximation theorems for Szasz - Mirakyan and Baskakov operators in polynomial weight spaces, Indiana Univ. Math. J. 27(1978)(1), 127–142.
[3] P. Gupta, V. Gupta, Rate of convergence on Baskakov-Szasz type operators. Fasc. Math. 31(2001), 37–44.
[4] V. Gupta, An estimate on the convergence of Baskakov-B ́ezier operators J. Math. Anal. Appl. 312(2005)(1), 280–288.
[5] V. Gupta, P. Maheshwari, On Baskakov-Szasz type operators, Kyungpook Math. J. 43(2003)(3), 315–325.
[6] S. Li, Local smoothness of functions and Baskakov-Durrmeyer operators, J. Approx. Th. 88(1997), 139–153.
[7] L. Rempulska, Z. Walczak, On modified Baskakov operators, Proc. A. Razmadze Math. Inst. 133(2003), 109–117.
[8] Z. Walczak, Baskakov type operators, Rocky Mountain J. Math. (in press).
[9] Z. Walczak, On the rate of convergence for modified Baskakov operators, Liet. matem. rink. 44(2004)(1), 124–130.
[10] D. X. Zhou, On smoothness characterized by Bernstein type operators, J. Approx. Th. 81(1995), 303–315.