**REFERENCES**

[1] M. Benchohra, J. Henderson, S. K. Ntoyuas, and A. Quahab, Existence results for fractional

order functional differential equations with infinite delay, J. Math. Anal. Appl. 338 (2008), 1340–1350.

[2] M. Caputo, Linear models of dissipation whose Q is almost frequency independent (Part II),

Geophysical J. of the Royal Astronomical Society, 13 (1967), 529–539.

[3] D. Delbosco, L. Rodino, Existence and uniqueness for a nonlinear fractional differential equation,

J. Math. Anal. Appl., 204 (1996), 609–625.

[4] K. Diethelm, A. D. Freed, On the solution of nolinear fractional order differential equations used

in the modelling of viscoplasticity, in: F. Keil, W. Mackens, H. Voss (Eds.), Scientific Computing

in Chemical Engineering II- Computational Fluid Dynamics and Molecular Properties, SpringerVerlag,

Heidelberg, 1999, pp. 217–224.

[5] A. M. A. El-Sayed, M. Gaber, On the finite Caputo and finite Rietz derivatives, Electronic J.

Theoretical Physics, 13 (2006), 81–95.

[6] O. K. Jaradat, A. Al-Omari, S. Momani, Existence of the mild solution for fractional semilinear

initial value problems, Nonlinear Anal., 69 (2008), 3153–3159.

[7] A. A. Kilbas, S. A. Marzan, Nonlinear differential equations with the Caputo fractional derivative

in the space of continuously differentiable functions, Differ. Uravn., 41 (2005), 82–86, (in

Russian); translation in Differ. Equ., 41 (2005), 84–89.

[8] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, “Theory and Applications of Fractional Differential

Equations”, North Holland Mathematics Studies, 204, Elsevier, 2006.

[9] A. A. Kilbas, J. J. Trujillo, Differential equations of fractional order: methods, results and

problems, Appl. Anal., 78 (2001), 153–192.

[10] V. Lakshmikantham, Theory of fractional functional differential equations, Nonlinear Anal., 69

(2008), 3337–3343.

[11] V. Lakshmikantham, A. S. Vatsala, Basic theory of fractional differential equations, Nonlinear

Anal., 69 (2008), 2677–2682.

[12] K. S. Miller, B. Ross, “An introduction to fractional calculus and fractional differential equations”,

John Wiley & Sons, New York, 1993.

[13] M. D. Ortigueira, J. A. Tenreiro-Machado, J. S´a da Costa, Considerations about the choice of a

differintegrator, Proceedings of the 2nd International Conference on Computational Cybernetics,

Vienna University of Technology, 2004.

[14] I. Podlubny, “Fractional Differential Equations, Mathematics in Sciences and Applications”,

Academic Press, New York, 1999.

[15] J. Sabatier, O. P. Agrawal, J. A. Tenreiro-Machado, “Advances in Fractional Calculus: Theoretical

Developments and Applications in Physics and Engineering”, Springer, The Netherlands, 2007.

[16] S. G. Samko, A. A. Kilbas, O. I. Mirichev, “Fractional Integral and Derivatives (Theory and

Applications)”, Gordon and Breach, Switzerland, 1993.