THEORY OF FRACTIONAL DIFFERENTIAL EQUATIONS WITH THREE-POINT BOUNDARY CONDITIONS

TitleTHEORY OF FRACTIONAL DIFFERENTIAL EQUATIONS WITH THREE-POINT BOUNDARY CONDITIONS
Publication TypeJournal Article
Year of Publication2008
AuthorsAHMAD, BASHIR, SIVASUNDARAM, S
Volume12
Issue4
Start Page484
Pagination6
Date Published2008
ISSN1083-2564
AMS34A12, 34A40
Abstract

This paper studies existence and uniqueness results in a Banach space for a three-point boundary value problem involving a fractional differential equation given by $${ ^cD^q x(t) = f(t, x(t)), \ \ \ \  t ∈ [0, T ], \ \ \   0 < q < 1, }$$ $${ αx(0) + βx(T ) = γx(η), \ \ \  0 < η < T, \ \ \ α + β \ne  γ.}$$ The contraction mapping principle and Krasnoselskii’s fixed point theorem are employed to establish the results.

URLhttp://www.acadsol.eu/en/articles/12/4/11.pdf
Refereed DesignationRefereed
Full Text

REFERENCES
[1] B. Ahmad and S. Sivasundaram, Some existence results for fractional integro-differential equations
with nonlocal conditions, Commun. Appl. Anal. 12(2008) 107–112.
[2] M. Benchohra, J. Henderson, S. K. Ntouyas, A. Ouahab, Existence results for fractional order
functional differential equations with infinite delay, J. Math. Anal. Appl. 338 (2008) 1340–1350.
[3] W. Deng, Numerical algorithm for the time fractional Fokker-Planck equation, J. Comput.
Phys. 227 (2007) 1510–1522.
[4] K. Diethelm, A. D. Freed, On the solution of nonlinear fractional differential equations used in
the modeling of viscoplasticity, in: F. Keil, W. Mackens, H. Vob, J. Werther (Eds.), Scientific
Computing in Chemical Engineering II: Computational Fluid Dynamics, Reaction Engineering,
and Molecular Properties, Springer, Heidelberg, 1999, pp. 217–224.
[5] K. Diethelm, N. J. Ford, Multi-order fractional differential equations and their numerical
solution, Appl. Math. Comput. 154 (2004) 621–640.
[6] V. Gafiychuk, B. Datsko, V. Meleshko, Mathematical modeling of time fractional reactiondiffusion
systems, J. Comput. Appl. Math. (in press).
[7] A.A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential
Equations, North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006.
[8] V. Lakshmikantham, A. S. Vatsala, Basic theory of fractional differential equations, Nonlinear
Anal. 69(2008) 2677–2682.
[9] V. Lakshmikantham, Theory of fractional functional differential equations, Nonlinear Anal.
69(2008) 3337–3343.
[10] V. Lakshmikantham, A. S. Vatsala, Theory of fractional differential inequalities and applications,
Commun. Appl. Anal. 11(2007) 395–402.
[11] M. P. Lazarevi´c, Finite time stability analysis of PDα fractional control of robotic time -delay
systems, Mech. Res. Comm. 33(2006) 269–279.
[12] K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Differential Equations,
John Wiley, New York, 1993.
[13] G. M. N’Guerekata, A Cauchy problem for some fractional abstract differential equation with
non local conditions, Nonlinear Anal. doi:10.1016/j.na.2008.02.087 (In Press).
[14] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
[15] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fraction