**REFERENCES**

[1] H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces,

SIAM. Rev. 18 (1976), 620–709.

[2] D. Franco and D. O’Regan, Existence of solutions to second order problems with nonlinear

boundary conditions, Discrete Contin. Dyn. Syst. suppl. (2005), 273–280.

[3] J. R. Graef and Bo Yang, Positive solutions of a third order nonlocal boundary value problem,

Discrete Contin. Dyn. Syst. Ser. S 1 (2008), 89–97.

[4] D. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press,

Boston, 1988.

[5] P. Guidotti and S. Merino, Gradual loss of positivity and hidden invariant cones in a scalar

heat equation, Differential Integral Equations 13 (2000), 1551–1568.

[6] G. Infante, Positive solutions of differential equations with nonlinear boundary conditions,

Discrete Contin. Dyn. Syst. suppl. (2003), 432–438.

[7] G. Infante, Positive solutions of some nonlinear BVPs involving singularities and integral BCs,

Discrete Contin. Dyn. Syst. Ser. S 1 (2008), 99–106.

[8] G. Infante, Nonzero solutions of second order problems subject to nonlinear BCs, Proceedings

of The Fifth International Conference on Dynamic Systems and Applications, to appear.

[9] G. Infante and J. R. L. Webb, Loss of positivity in a nonlinear scalar heat equation, NoDEA

Nonlinear Differential Equations Appl. 13 (2006), 249–261.

[10] G. Infante and J. R. L. Webb, Nonlinear nonlocal boundary value problems and perturbed

Hammerstein integral equations, Proc. Edinb. Math. Soc. 49 (2006), 637–656.

[11] G. L. Karakostas and P. Ch. Tsamatos, Existence of multiple positive solutions for a nonlocal

boundary value problem, Topol. Methods Nonlinear Anal. 19 (2002), 109–121.

[12] G. L. Karakostas and P. Ch. Tsamatos, Multiple positive solutions of some Fredholm integral

equations arisen from nonlocal boundary-value problems, Electron. J. Differential Equations

2002, No. 30, 17 pp.

[13] R. A. Khan, Generalized approximations for nonlinear three-point boundary value problems,

Appl. Math. Comput. 197 (2008), 111–120.

[14] L. Kong and J. Wang, Multiple positive solutions for the one-dimensional p-Laplacian, Nonlinear

Anal. 42 (2000), 1327–1333.

[15] M. A. Krasnosel’ski˘ı and P. P. Zabre˘ıko, Geometrical Methods of Nonlinear Analysis, SpringerVerlag,

Berlin, 1984.

[16] K. Q. Lan, Multiple positive solutions of semilinear differential equations with singularities, J.

London Math. Soc, 63 (2001), 690–704.

[17] R. Ma and N. Castaneda, Existence of solutions of nonlinear m-point boundary value problems,

J. Math. Anal. Appl., 256 (2001), 556–567.

[18] P. K. Palamides, G. Infante and P. Pietramala, Nontrivial solutions of a nonlinear heat flow

problem via Sperner Lemma, submitted.

[19] J. R. L. Webb, Multiple positive solutions of some nonlinear heat flow problems, Discrete

Contin. Dyn. Syst. suppl. (2005), 895–903.

[20] J. R. L. Webb, Optimal constants in a nonlocal boundary value problem, Nonlinear Anal. 63

(2005), 672–685.

[21] J. R. L. Webb, Fixed point index and its application to positive solutions of nonlocal boundary

value problems, Seminar of Mathematical Analysis, Univ. Sevilla Secr. Publ., Seville, (2006),

181–205.

[22] J. R. L. Webb and G. Infante, Positive solutions of nonlocal boundary value problems: a

unified approach J. London Math. Soc. 74 (2006), 673–693.

[23] J. R. L. Webb and G. Infante, Positive solutions of nonlocal boundary value problems involving

integral conditions, NoDEA Nonlinear Differential Equations Appl. 15 (2008), 45–67.

[24] Z. Yang, Positive solutions to a system of second-order nonlocal boundary value problems,

Nonlinear Anal. 62 (2005), 1251–1265.

[25] Z. Yang, Positive solutions of a second-order integral boundary value problem, J. Math. Anal.

Appl. 321 (2006), 751–765.

[26] M. Zima, Fixed point theorem of Leggett-Williams type and its application, J. Math. Anal.

Appl. 299 (2004), 254–260.