**REFERENCES**

[1] R. P. Agarwal, D. O’Regan and P. J. Y. Wong, Positive Solutions of Differential, Difference

and Integral Equations, Kluwer, Dordrecht, 1999.

[2] R. P. Agarwal, D. O’Regan and P. J. Y. Wong, Constant-sign solutions of a system of Fredholm

integral equations, Acta Appl. Math. 80 (2004), 57–94.

[3] R. P. Agarwal, D. O’Regan and P. J. Y. Wong, Eigenvalues of a system of Fredholm integral

equations, Math. Comput. Modelling 39 (2004), 1113–1150.

[4] R. P. Agarwal, D. O’Regan and P. J. Y. Wong, Triple solutions of constant sign for a system

of Fredholm integral equations, Cubo 6 (2004), 1–45.

[5] R. P. Agarwal, D. O’Regan and P. J. Y. Wong, Constant-sign Lp solutions for a system of integral equations, Results in Mathematics 46 (2004), 195–219.

[6] R. P. Agarwal, D. O’Regan and P. J. Y. Wong, Constant-sign solutions of a system of integral

equations: The semipositone and singular case, Asymptotic Analysis 43 (2005), 47–74.

[7] R. P. Agarwal, D. O’Regan and P. J. Y. Wong, Constant-sign solutions of a system of integral

equations with integrable singularities, J. Integral Equations Appl. 19 (2007), 117–142.

[8] R. P. Agarwal, D. O’Regan and P. J. Y. Wong, Solutions of a system of integral equations in

Orlicz spaces, J. Integral Equations Appl., to appear.

[9] P. J. Bushell, On a class of Volterra and Fredholm non-linear integral equations, Math. Proc.

Cambridge Philos. Soc. 79 (1976), 329–335.

[10] P. J. Bushell and W. Okrasi´nski, Uniqueness of solutions for a class of nonlinear Volterra

integral equations with convolution kernel, Math. Proc. Cambridge Philos. Soc. 106 (1989), 547–552.

[11] P. J. Bushell and W. Okrasi´nski, Nonlinear Volterra integral equations with convolution kernel,

J. London Math. Soc. 41 (1990), 503–510.

[12] W. Dong, Uniqueness of solutions for a class of non-linear Volterra integral equations without

continuity, Appl. Math. Mech. (English Ed.) 18 (1997), 1191–1196.

[13] P. W. Eloe and J. Henderson, Singular nonlinear (k, n−k) conjugate boundary value problems,

J. Differential Equations 133 (1997), 136–151.

[14] L. H. Erbe, S. Hu and H. Wang, Multiple positive solutions of some boundary value problems,

J. Math. Anal. Appl. 184 (1994), 640–648.

[15] L. H. Erbe and H. Wang, On the existence of positive solutions of ordinary differential equations,

Proc. Amer. Math. Soc. 120 (1994), 743–748.

[16] L. H. Erbe and A. Peterson, Eigenvalue conditions and positive solutions, J. Difference Equ.

Appl. 6 (2000), 165–191.

[17] G. Gripenberg, Unique solutions of some Volterra integral equations, Math. Scand. 48 (1981), 59–67.

[18] G. Gripenberg, S.-O. Londen and O. Staffans, Volterra Integral and Functional Equations,

Encyclopedia of Mathematics and its Applications 34, Cambridge University Press, Cambridge, 1990.

[19] C. P. Gupta, Existence and uniqueness theorems for the bending of an elastic beam equation,

Applicable Anal. 26 (1998), 289–304.

[20] M. A. Krasnosel’skii, Positive Solutions of Operator Equations, Noordhoff, Groningen, 1964.

[21] W. Lian, F. Wong and C. Yeh, On the existence of positive solutions of nonlinear second order

differential equations, Proc. Amer. Math. Soc. 124 (1996), 1117–1126.

[22] M. Meehan and D. O’Regan, Positive solutions of Volterra integral equations using integral

inequalities, J. Inequal. Appl. 7 (2002), 285–307.

[23] D. O’Regan and M. Meehan, Existence Theory for Nonlinear Integral and Integrodifferential

Equations, Kluwer, Dordrecht, 1998.

[24] D. W. Reynolds, On linear singular Volterra integral equations of the second kind, J. Math.

Anal. Appl. 103 (1984), 230–262.