REFERENCES
[1] R. P. Agarwal, D. O’Regan and P. J. Y. Wong, Positive Solutions of Differential, Difference
and Integral Equations, Kluwer, Dordrecht, 1999.
[2] R. P. Agarwal, D. O’Regan and P. J. Y. Wong, Constant-sign solutions of a system of Fredholm
integral equations, Acta Appl. Math. 80 (2004), 57–94.
[3] R. P. Agarwal, D. O’Regan and P. J. Y. Wong, Eigenvalues of a system of Fredholm integral
equations, Math. Comput. Modelling 39 (2004), 1113–1150.
[4] R. P. Agarwal, D. O’Regan and P. J. Y. Wong, Triple solutions of constant sign for a system
of Fredholm integral equations, Cubo 6 (2004), 1–45.
[5] R. P. Agarwal, D. O’Regan and P. J. Y. Wong, Constant-sign Lp solutions for a system of integral equations, Results in Mathematics 46 (2004), 195–219.
[6] R. P. Agarwal, D. O’Regan and P. J. Y. Wong, Constant-sign solutions of a system of integral
equations: The semipositone and singular case, Asymptotic Analysis 43 (2005), 47–74.
[7] R. P. Agarwal, D. O’Regan and P. J. Y. Wong, Constant-sign solutions of a system of integral
equations with integrable singularities, J. Integral Equations Appl. 19 (2007), 117–142.
[8] R. P. Agarwal, D. O’Regan and P. J. Y. Wong, Solutions of a system of integral equations in
Orlicz spaces, J. Integral Equations Appl., to appear.
[9] P. J. Bushell, On a class of Volterra and Fredholm non-linear integral equations, Math. Proc.
Cambridge Philos. Soc. 79 (1976), 329–335.
[10] P. J. Bushell and W. Okrasi´nski, Uniqueness of solutions for a class of nonlinear Volterra
integral equations with convolution kernel, Math. Proc. Cambridge Philos. Soc. 106 (1989), 547–552.
[11] P. J. Bushell and W. Okrasi´nski, Nonlinear Volterra integral equations with convolution kernel,
J. London Math. Soc. 41 (1990), 503–510.
[12] W. Dong, Uniqueness of solutions for a class of non-linear Volterra integral equations without
continuity, Appl. Math. Mech. (English Ed.) 18 (1997), 1191–1196.
[13] P. W. Eloe and J. Henderson, Singular nonlinear (k, n−k) conjugate boundary value problems,
J. Differential Equations 133 (1997), 136–151.
[14] L. H. Erbe, S. Hu and H. Wang, Multiple positive solutions of some boundary value problems,
J. Math. Anal. Appl. 184 (1994), 640–648.
[15] L. H. Erbe and H. Wang, On the existence of positive solutions of ordinary differential equations,
Proc. Amer. Math. Soc. 120 (1994), 743–748.
[16] L. H. Erbe and A. Peterson, Eigenvalue conditions and positive solutions, J. Difference Equ.
Appl. 6 (2000), 165–191.
[17] G. Gripenberg, Unique solutions of some Volterra integral equations, Math. Scand. 48 (1981), 59–67.
[18] G. Gripenberg, S.-O. Londen and O. Staffans, Volterra Integral and Functional Equations,
Encyclopedia of Mathematics and its Applications 34, Cambridge University Press, Cambridge, 1990.
[19] C. P. Gupta, Existence and uniqueness theorems for the bending of an elastic beam equation,
Applicable Anal. 26 (1998), 289–304.
[20] M. A. Krasnosel’skii, Positive Solutions of Operator Equations, Noordhoff, Groningen, 1964.
[21] W. Lian, F. Wong and C. Yeh, On the existence of positive solutions of nonlinear second order
differential equations, Proc. Amer. Math. Soc. 124 (1996), 1117–1126.
[22] M. Meehan and D. O’Regan, Positive solutions of Volterra integral equations using integral
inequalities, J. Inequal. Appl. 7 (2002), 285–307.
[23] D. O’Regan and M. Meehan, Existence Theory for Nonlinear Integral and Integrodifferential
Equations, Kluwer, Dordrecht, 1998.
[24] D. W. Reynolds, On linear singular Volterra integral equations of the second kind, J. Math.
Anal. Appl. 103 (1984), 230–262.