REFERENCES
[1] R. Agarwal, M. Bohner and S. H. Saker, Oscillation criteria for second order delay dynamic
equation, Canadian Applied Mathematics Quarterly 13 (2005), 1–17.
[2] R. P. Agarwal, D. O’Regan and S. H. Saker, Oscillation results for second-order nonlinear
neutral delay dynamic equations on time scales, Appl. Analysis 86 (2007), 1–17.
[3] R. P. Agarwal, D. O’Regan and S. H. Saker, Oscillation criteria for nonlinear perturbed dynamic
equations of second-order on time scales, J Appl. Math. Computing. 20 (2006), 133–147.
[4] M. Bohner and A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications,
Birkh¨auser, Boston, 2001.
[5] M. Bohner and A. Peterson, Advances in Dynamic Equations on Time Scales, Birkh¨auser, Boston, 2003.
[6] M. Bohner and S. H. Saker, Oscillation criteria for perturbed nonlinear dynamic equations,
Mathl. Comp. Modeling 40 (2004), 3-4, 249–260.
[7] L. Erbe, Oscillation criteria for second order linear equations on a time scale, Canadian Appl.
Math. Quart. 9 (2001), 1–31.
[8] L. Erbe, A. Peterson and S. H. Saker, Oscillation criteria for second-order nonlinear dynamic
equations on time scales, J. London Math. Soc. 76 (2003), 701–714.
[9] L. Erbe, A. Peterson and S. H. Saker, Kamenev-type oscillation criteria for second-order linear
delay dynamic equations, Dynamic Syst. & Appl. 15 (2006), 65–78.
[10] L. Erbe, A. Peterson and S. H. Saker, Asymptotic behavior of solutions of a third-order
nonlinear dynamic equation on time scales, J. Comp. Appl. Math. 181, No. 1 (2005), 92–102.
[11] S. Hilger, Analysis on measure chains — a unified approach to continuous and discrete calculus,
Results Math. 18 (1990), 18–56.
[12] E. Hille, Non-oscillation theorems, Trans. Amer. Math. Soc. 64 (1948), 234–252.
[13] V. Kac and P. Cheung, Quantum Calculus, Springer, New York, 2001.
[14] Z. Nehari, Oscillation criteria for second-order linear differential equations, Trans. Amer. Math.
Soc. 85 (1957), 428–445.
[15] S. H. Saker, Boundedness of solutions of second-order forced nonlinear dynamic equations,
Rocky Mountain. J. Math. 36 (2006), 2027–2039.
[16] S. H. Saker, Oscillation criteria of second-order half-linear dynamic equations on time scales,
J. Comp. Appl. Math. 177(2005), 375–387.
[17] S. H. Saker, Oscillation criteria for a certain class of second-order neutral delay dynamic
equations, Dynamics of Continuous, Discrete and Impulsive Systems Series B: Applications &
Algorithms (accepted).
[18] S. H. Saker, Oscillation of second-order forced nonlinear dynamic equations on time scales,
EJQTDE. 23 (2005), 1–17.
[19] S. H. Saker, New oscillation criteria for second-order nonlinear dynamic equations on time
scales, Nonlinear Fun. Anal. Appl. 11 (2006), 351–370.
[20] S. H. Saker, Oscillation of superlinear and sublinear neutral delay dynamic equations, Comm.
Appl. Anal. (accepted).
[21] V. Spedding, Taming Nature’s Numbers, New Scientist, July 19, 2003, 28–31.
[22] H. R. Sun and W. Tong Li, Oscillation of perturbed nonlinear dynamic equations on time
scales, ZAMM, Z. Angew. Math. Mech. 85 (2005), 755–760.