**REFERENCES**

[1] R. Agarwal, M. Bohner and S. H. Saker, Oscillation criteria for second order delay dynamic

equation, Canadian Applied Mathematics Quarterly 13 (2005), 1–17.

[2] R. P. Agarwal, D. O’Regan and S. H. Saker, Oscillation results for second-order nonlinear

neutral delay dynamic equations on time scales, Appl. Analysis 86 (2007), 1–17.

[3] R. P. Agarwal, D. O’Regan and S. H. Saker, Oscillation criteria for nonlinear perturbed dynamic

equations of second-order on time scales, J Appl. Math. Computing. 20 (2006), 133–147.

[4] M. Bohner and A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications,

Birkh¨auser, Boston, 2001.

[5] M. Bohner and A. Peterson, Advances in Dynamic Equations on Time Scales, Birkh¨auser, Boston, 2003.

[6] M. Bohner and S. H. Saker, Oscillation criteria for perturbed nonlinear dynamic equations,

Mathl. Comp. Modeling 40 (2004), 3-4, 249–260.

[7] L. Erbe, Oscillation criteria for second order linear equations on a time scale, Canadian Appl.

Math. Quart. 9 (2001), 1–31.

[8] L. Erbe, A. Peterson and S. H. Saker, Oscillation criteria for second-order nonlinear dynamic

equations on time scales, J. London Math. Soc. 76 (2003), 701–714.

[9] L. Erbe, A. Peterson and S. H. Saker, Kamenev-type oscillation criteria for second-order linear

delay dynamic equations, Dynamic Syst. & Appl. 15 (2006), 65–78.

[10] L. Erbe, A. Peterson and S. H. Saker, Asymptotic behavior of solutions of a third-order

nonlinear dynamic equation on time scales, J. Comp. Appl. Math. 181, No. 1 (2005), 92–102.

[11] S. Hilger, Analysis on measure chains — a unified approach to continuous and discrete calculus,

Results Math. 18 (1990), 18–56.

[12] E. Hille, Non-oscillation theorems, Trans. Amer. Math. Soc. 64 (1948), 234–252.

[13] V. Kac and P. Cheung, Quantum Calculus, Springer, New York, 2001.

[14] Z. Nehari, Oscillation criteria for second-order linear differential equations, Trans. Amer. Math.

Soc. 85 (1957), 428–445.

[15] S. H. Saker, Boundedness of solutions of second-order forced nonlinear dynamic equations,

Rocky Mountain. J. Math. 36 (2006), 2027–2039.

[16] S. H. Saker, Oscillation criteria of second-order half-linear dynamic equations on time scales,

J. Comp. Appl. Math. 177(2005), 375–387.

[17] S. H. Saker, Oscillation criteria for a certain class of second-order neutral delay dynamic

equations, Dynamics of Continuous, Discrete and Impulsive Systems Series B: Applications &

Algorithms (accepted).

[18] S. H. Saker, Oscillation of second-order forced nonlinear dynamic equations on time scales,

EJQTDE. 23 (2005), 1–17.

[19] S. H. Saker, New oscillation criteria for second-order nonlinear dynamic equations on time

scales, Nonlinear Fun. Anal. Appl. 11 (2006), 351–370.

[20] S. H. Saker, Oscillation of superlinear and sublinear neutral delay dynamic equations, Comm.

Appl. Anal. (accepted).

[21] V. Spedding, Taming Nature’s Numbers, New Scientist, July 19, 2003, 28–31.

[22] H. R. Sun and W. Tong Li, Oscillation of perturbed nonlinear dynamic equations on time

scales, ZAMM, Z. Angew. Math. Mech. 85 (2005), 755–760.