REFERENCES
[1] L. Berg, Asymptoticsche Darstellungen und Entwicklungen, Dt. Verlag Wiss, Berlin, 1968.
[2] L. Berg, On the asymptotics of nonlinear difference equations, Z. Anal. Anwendungen 21
(2002), 1061–1074.
[3] L. Berg, Inclusion theorems for nonlinear difference equations with applications, J. Differ.
Equations. Appl. 10 (2004), 399–408.
[4] L. Berg, Oscillating solutions of rational difference equations, Rostock. Math. Kolloq. 58 (2004), 31–35.
[5] L. Berg, Corrections to “Inclusion theorems for nonlinear difference equations with applications”,
J. Differ. Equations Appl. 11 (2005), 181–182.
[6] L. Berg and L. v. Wolfersdorf, On a class of generalized autoconvolution equations of the third
kind, Z. Anal. Anwendungen 24 (2005), 217–250.
[7] E. Camouzis, R. Devault, and W. Kosmala, On the period five trichotomy of all positive
solutions of xn+1 =p + xn−2xn, J. Math. Anal. Appl. 291 (2004), 40–49.
[8] R. Devault, C. Kent and W. Kosmala, On the recursive sequence xn+1 = p +xn−kxn, J. Differ.
Equations Appl. 9 (2003), 721–730.
[9] S. Stevi´c, Asymptotic behaviour of a sequence defined by iteration, Math. Vesnik 48 (1996), 99–105.
[10] S. Stevi´c, Behaviour of the positive solutions of the generalized Beddington-Holt equation,
Panamer. Math. J. 4 (2000), 77–85.
[11] S. Stevi´c, Asymptotic behaviour of a sequence defined by a recurrence formula, Austral. Math.
Soc. Gaz. 28 (2001), 243–245.
[12] S. Stevi´c, On the recursive sequence xn+1 = −1xn+Axn−1, Inter. J. Math. Sci. 27 (2001).
[13] S. Stevi´c, A global convergence results with applications to periodic solutions, Indian J. Pure
Appl. Math. 33 (2002), 45–53.
[14] S. Stevi´c, A note on the difference equations xn+1 =Pki=0αixpin−i, J. Differ. Equations Appl. 8 (2002), 641–647.
[15] S. Stevi´c, Asymptotic behaviour of a sequence defined by a recurrence formula II, Austral.
Math. Soc. Gaz. 29 (2002), 209–215.
[16] S. Stevi´c, Asymptotic behaviour of a nonlinear difference equation, Indian J. Pure Appl. Math.
34 (2003), 1681–1689.
[17] S. Stevi´c, On the recursive sequence xn+1 = xn +xαnnβ, Bull. Calcuta Math. Soc. 95 (2003), 39–46.
[18] S. Stevi´c, More on the difference equation xn+1 =xn−11 + xn−1xn, Appl. Math. E-notes 4 (2004), 80–85.
[19] S. Stevi´c, On the recursive sequence xn+1 = α +xpn−1xpn, J. Appl. Math and Computing 18(2005), 229–234.
[20] S. Stevi´c, Asymptotic behaviour of a class of nonlinear difference equations, Discrete Dyn.
Nat. Soc. Vol. 2006, Article ID 47156, pp. 10.
[21] S. Stevi´c, Global stability and asymptotics of some classes of rational difference equations, J.
Math. Anal. Appl. 316 (2006), 60–68.
[22] S. Stevi´c, On monotone solutions of some classes of difference equations, Discrete Dyn. Nat.
Soc. Vol. 2006, Article ID 53890, (2006), pp. 9.
[23] S. Stevi´c, On positive solutions of a (k + 1)-th order difference equation, Appl. Math. Lett. 19
(2006), 427–431.
[24] S. Stevi´c, Asymptotics of some classes of higher order difference equations, Discrete Dyn. Nat.
Soc. Vol. 2007, Article ID 56813, (2007), 20 pages.
[25] S. Stevi´c, Existence of nontrivial solutions of a rational difference equation, Appl. Math. Lett.
20 (2007), 28–31.
[26] S. Stevi´c and K. Berenhaut, A note on positive nonoscillatory solutions of the difference
equation xn+1 = α +xpn−kxpn , J. Differ. Equations Appl. 12 (2006), 495–499.
[27] S. Stevi´c and K. Berenhaut, The difference equation xn+1 = α + xn−k Pk−1 i=0 cixn−i
has solutions converging to zero, J. Math. Anal. Appl. 326 (2007), 1466–1471.