REFERENCES
[1] C. D. Aliprantis, O. Burkinshaw, Positive operators, Academic Press, Inc., Orlando, FL, 1985.
[2] S. D. Chatterji, Martingale convergence and the Radon–Nikodym theorem in Banach spaces,
Math. Scand. 22 (1968), 21–41.
[3] W. J. Davis, N. Ghoussoub, J. Lindenstrauss, A lattice renorming theorem and applications
to vector-valued processes, Trans. Amer. Math. Soc. 263 (1981), 531–540.
[4] M. Day, Normed linear spaces, 3rd ed., Ergebnisse der Mathematik und ihrere Grenzgebiete,
Band 21, Springer-Verlag, New York-Heidelberg, 1973.
[5] S. Kakutani, Concrete representation of abstract (L)-spaces and the mean ergodic theorem,
Ann. of Math. (2) 42 (1941), 523–537.
[6] K. Kunen, H. Rosenthal, Martingale proofs of some geometrical results in Banach space theory,
Pacific J. Math., 100 (1982), 153–175.
[7] J. Neveu, Discrete-parameter martingales, North-Holland Publishing Co., Amsterdam, Oxford;
American Elsevier Publishing Co., Inc., New York, 1975.
[8] H. H. Schaefer, Banach lattices and positive operators, Springer–Verlag, Berlin, New York–
Heidelberg, 1974.
[9] U. Schlotterbeck, Ub¨ er klassen majorisierbarer operatoren auf Banachverb¨anden, (German)
Rev. Acad. Ci. Zaragoza (2) 26 (1971), 585–614.
[10] J. Szulga, On the submartingale characterization of Banach lattices isomorphic to l1, Bull.
Acad. Polon. Sci. S´er. Sci. Math. Astronom. Phys. 26 (1978), 65–68.
[11] J. Szulga, Regularity of Banach lattice valued martingales, Colloq. Math. 41 (1979), 303–312.
[12] J. Szulga, W. A. Woyczynski, ´ Convergence of submartingales in Banach lattices, Ann. Probability
4 (1976), 464–469.
[13] L. Tzafriri, Reflexivity in Banach lattices and their subspaces, J. Functional Analysis 10
(1972), 1–18.
[14] W. Wnuk, Banach lattices with order continuous norms, Advanced Topics in Mathematics.
Warsaw: Polish Scientific Publishers PWN, 1999.