**REFERENCES**

[1] H.T. Banks, J.B. Hood, and N.G. Medhin. A molecular based model for polymer viscoelasticity:

Intra- and inter-molecular variability. Technical Report CRSC-TR04-39, NCSU, 2004.

[2] H. T. Banks, and N.G. Medhin. A Molecular Based Model for Viscoelastic Responses of Rubber

in Tensile Deformations, Communications on Applied Nonlinear Analysis 8 (2001), No. 3, 1–18.

[3] H.T. Banks, N.G. Medhin, G. Pinter. Multiscale Consideration in Modeling of Nonlinear Elastomers.

(To appear: Journal of Computational Methods in Sciences and Engineering).

[4] H.T. Banks, N.G. Medhin, G. Pinter. Nonlinear Reptation in Molecular Based Hysteresis

Models for Polymers. Quarterly of Applied Mathematics (2004).

[5] H.T. Banks, N.G. Medhin, G. Pinter. Nonlinear Shear Deformations of Elastomers. (To besubmitted)

[6] H.T. Banks, G.A. Pinter and L.K. Potter. “Existence of Unique Weak Solutions to a Dynamical

System for Nonlinear Elastomers with Hysteresis,” CRSC-TR98-43, NCSU, Nov. 1998;

Differential and Integral Equations 13 (2000).

[7] H.T. Banks, G.A. Pinter, L.K. Potter, M.J. Gaitens and L.C. Yanyo. “Modeling of Nonlinear

Hysteresis in Elastomers Under Uniaxial Tension,” CRSC-TR99-09, NCSU, Feb. 1999; J.

Intelligent Material Systems and Structures 10 (1999) pp. 116–134.

[8] M. Doi and S.F. Edwards. The Theory of Polymer Dynamics, Oxford, New York, 1986.

[9] de Gennes, Scaling Concepts in Polymer Physics (Cornell Univ. Press, Ithaca(1991).

[10] de Gennes, P. G. Molecular individualism, Science 276, 199 (1997).

[11] S.F. Edwards, Proc. Phys. Soc. 92 (1967).

[12] W.W. Graessly, Entangled linear, branched and Network Polymer Systems-Molecular Theories,

Adv. Polym. Sci. 47 (1982) pp. 67–117.

[13] A.R. Johnson and R.G. Stacer, Rubber Viscoelasticity Using the Physically constrained Systems

Stretches as Internal Variables, Rubber Chemistry and Technology 66 (1993), pp. 567–577.

[14] N.G. Medhin, Molecular-Based Model for Hysteresis with Random Forcing, Contemporary

Problems in Mathematical Physics, ed. J. Gvaerts, M. Hounkonnou, A. Msezane, World Scientific

Pub. Co. 2002, pp. 259–267.

[15] L.R.G. Treloar, The Physics of Rubber Elasticity, Clarendon, Oxford 1975.

[16] H.T. Banks and N. Lybeck, Modeling methodology for elastomer dynamic, in Systems and

Control in the 21st Century, Birkhauser, Boston, 1996, pp. 37–50.

[17] H.T. Banks, N.J. Lybeck, M.J. Gaitens, B.C. Munoz and L.C. Yanyo, Computational methods

for estimation in the modeling of nonlinear elastomers, CRSU-TR95-40, NCSU, Kybernetika

32 (1996), pp. 526–542.

[18] H.T. Banks, D.S. Gilliam and V.I. Shubov, Global solvability for damped abstract nonlinear

hyperbolic systems, Differential and Integral Equations 10 (1997), pp. 309–332.

[19] H.T. Banks and G. A. Pinter, Approximation results for parameter estimation in nonlinear

elastomers, Control and Estimation of Distributed Parameter Systems, F. Kappel, et. al., eds.,

Birkhauser, Boston, 1997.

[20] H.T. Banks, N.J. Lybeck, M.J. Gaitens, B.C. Munoz and L.C. Yanyo, Computational methods

for estimation in the modeling of nonlinear elastomers, CRSU-TR95-40, NCSU, Kybernetika

32 (1996), pp. 526–542.

[21] H.T. Banks, G.A. Pinter, and L.K. Potter, Modeling of Nonlinear Hysteresis in Elastomers

Under Uniaxial Tension, J. Intelligent Material Systems and Structures 10 (1999), pp. 116– 134.

[22] H.T. Banks and G.A. Pinter, Damping: hysteretic damping and models. Encyclopedia of

Vibrations, Academic Press, London, 2001, pp. 658-664.

[23] M. Doi. Introduction to Polymer Physics. Clarendon Press, Oxford, 1996.

[24] M. Doi and S.F. Edwards. The Theory of Polymer Dynamics. Oxford, New York, 1986.

[25] Jiro Doke. Grabit.m. The MathWorks MatLab Central Website, March 17, 2005.

http://www.mathworks.com/matlabcentral/fileexchange (accessed April 13, 2005).

[26] D.P. Fyhrie and J.R. Barone. Polymer dynamics as a mechanistic model for the flowindependent

viscoelasticity of cartilage. J. Biomech. Eng. 125 (2003), 578–584.

[27] C.Y. Huang, V.C. Mow, and G.A. Ateshian. The role of flow-independent viscoelasticity in

the biphasic tensile and compressive responses of articular cartilage. J. Biomech. Eng. 123

(2001), 410–417.

[28] A.R. Johnson and R.G. Stacer. Rubber viscoelasticity using the physically constrained system’s

stretches as internal variables. Rubber Chemistry and Technology 66 (4) (1993).

[29] R.W. Ogden. Non-Linear Elastic Deformations. Ellis Horwood Limited, Chichester, 1984.

[30] E. Riande, R. Diaz-Calleja, M.G.Prolongo, R.M. Masegosa, and C. Salom. Polymer Viscoelasticity

– Stress and Strain in Practice. Marcel Dekker, Inc, New York, 2000.