PERTURBED FUNCTIONAL DIFFERENTIAL EQUATIONS WITH FRACTIONAL ORDER

TitlePERTURBED FUNCTIONAL DIFFERENTIAL EQUATIONS WITH FRACTIONAL ORDER
Publication TypeJournal Article
Year of Publication2007
AuthorsBELARBI, ABDELKADER, BENCHOHRA, MOUFFAK, HAMANI, SAMIRA, NTOUYAS, SOTIRISK
Secondary TitleCommunications in Applied Analysis
Volume11
Issue4
Start Page429
Pagination440
Date Published12/2007
Type of Workscientific: mathematics
ISSN1083–2564
AMS26A33, 34K05
Abstract
In this paper, we shall establish sufficient conditions for the existence of solutions, as well as extremal solutions, for perturbed fractional functional differential equations.
URLhttp://www.acadsol.eu/en/articles/11/4/1.pdf
Short TitlePERTURBED FRACTIONAL FUNCTIONAL DIFFERENTIAL EQUATIONS
Refereed DesignationRefereed
Full Text

REFERENCES

[1] T. A. Burton and C. Kirk, A fixed point theorem of Krasnoselskii-Schaefer type, Math. Nachr. 189 (1998), 23–31.
[2] D. Delbosco and L. Rodino, Existence and uniqueness for a nonlinear fractional differential equation, J. Math. Anal. Appl. 204 (1996), 609–625.
[3] B. C. Dhage and J. Henderson, Existence theory for nonlinear functional boundary value problems, Electron. J. Qual. Theory Differ. Equ. 2004, No. 1, 15 pp.
[4] K. Diethelm and A.D. Freed, On the solution of nonlinear fractional order differential equations used in the modeling of viscoplasticity, in “Scientifice Computing in Chemical Engineering II-Computational Fluid Dynamics, Reaction Engineering and Molecular Properties” (F. Keil, W. Mackens, H. Voss, and J. Werther, Eds), pp 217–224, Springer-Verlag, Heidelberg, 1999.
[5] K. Diethelm and N. J. Ford, Analysis of fractional differential equations, J. Math. Anal. Appl. 265 (2002), 229–248.
[6] K. Diethelm and G. Walz, Numerical solution of fractional order differential equations by extrapolation, Numer. Algorithms 16 (1997), 231–253.
[7] A. M. A. El-Sayed, Fractional order evolution equations, J. Fract. Calc. 7 (1995), 89–100.
[8] A. M. A. El-Sayed, Fractional order diffusion-wave equations, Intern. J. Theo. Physics 35 (1996), 311–322.
[9] A. M. A. El-Sayed, Nonlinear functional differential equations of arbitrary orders, Nonlinear Anal. 33 (1998), 181–186.
[10] A. M. A. El-Sayed and A. G. Ibrahim, Multivalued fractional differential equations, Appl. Math. Comput. 68 (1995), 15–25.
[11] L. Gaul, P. Klein and S. Kempfle, Damping description involving fractional operators, Mech. Systems Signal Processing 5 (1991), 81–88.
[12] D. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, New York, 1988.
[13] W. G. Glockle and T. F. Nonnenmacher, A fractional calculus approach of self-similar protein dynamics, Biophys. J. 68 (1995), 46–53.
[14] J. Hale and S.M. Verduyn Lunel, Introduction to Functional Differential Equations, Applied Mathematical Sciences, 99, Springer-Verlag, New York, 1993.
[15] S. Heikkila and V. Lakshmikantham, Monotone Iterative Technique for Nonlinear Discontinuous Differential Equations, Marcel Dekker Inc., New York, 1994.
[16] D. Henry, Geometric Theory of Semilinear Parabolic Partial Differential Equations, Springer-Verlag, Berlin/New York, 1989.
[17] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
[18] A. A. Kilbas and S. A. Marzan, Nonlinear differential equations with the Caputo fractional derivative in the space of continuously differentiable functions, Differential Equations 41 (2005), 84–89.
[19] A. A. Kilbas, Hari M. Srivastava, and Juan J. Trujillo, Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006.
[20] V. Kolmanovskii, and A. Myshkis, Introduction to the Theory and Applications of Functional-Differential Equations. Mathematics and its Applications, 463. Kluwer Academic Publishers, Dordrecht, 1999.
[21] F. Mainardi, Fractional calculus: Some basic problems in continuum and statistical mechanics, in “Fractals and Fractional Calculus in Continuum Mechanics” (A. Carpinteri and F. Mainardi, Eds), pp. 291–348, Springer-Verlag, Wien, 1997.
[22] F. Metzler, W. Schick, H. G. Kilian and T. F. Nonnenmacher, Relaxation in filled polymers: A fractional calculus approach, J. Chem. Phys. 103 (1995), 7180–7186.
[23] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Differential Equations, John Wiley, New York, 1993.
[24] S. M. Momani and S. B. Hadid, Some comparison results for integro-fractional differential inequalities. J. Fract. Calc. 24 (2003), 37–44.
[25] S. M. Momani, S. B. Hadid and Z. M. Alawenh, Some analytical properties of solutions of differential equations of noninteger order, Int. J. Math. Math. Sci. 2004 (2004), 697–701.
[26] K. B. Oldham and J. Spanier, The Fractional Calculus, Academic Press, New York, London, 1974.
[27] I. Podlubny, Fractional Differential Equations, Academic Press, Singapore, 1999.
[28] I. Podlubny, I. Petraˇs, B. M. Vinagre, P. O’Leary and L. Dorˇcak, Analogue realizations of fractional-order controllers. Fractional order calculus and its applications, Nonlinear Dynam. 29 (2002), 281–296.
[29] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, Yverdon, 1993.
[30] C. Yu and G. Gao, Existence of fractional differential equations, J. Math. Anal. Appl. 310 (2005), 26–29.