ENTROPY SOLUTION OF A QUASILINEAR ELLIPTIC PROBLEM WITH NONLINEAR BOUNDARY CONDITION

TitleENTROPY SOLUTION OF A QUASILINEAR ELLIPTIC PROBLEM WITH NONLINEAR BOUNDARY CONDITION
Publication TypeJournal Article
Year of Publication2007
AuthorsSbihi, K, Wittbold, P
Secondary TitleCommunications in Applied Analysis
Volume11
Issue2
Start Page299
Pagination325
Date Published04/2007
Type of Workscientific: mathematics
ISSN1083–2564
AMS31C15, 35B20, 35J60, 47H06
Abstract

In this paper, we consider the equation u − div a(u, Du) = f on a bounded domain with nonlinear boundary conditions of the form −a(u, Du) · η ∈ β(x, u). We introduce a notion of entropy solution for this problem and prove existence and uniqueness of this solution for general L1 -data.

URLhttp://www.acadsol.eu/en/articles/11/2/11.pdf
Short TitleEntropy Solution of a Quasilinear Elliptic Problem 323 In a forthcoming paper, the existence and u
Refereed DesignationRefereed
Full Text

References

[1] H.W. Alt and S. Luckhaus, Quasilinear elliptic-parabolic differential equations, Math. Z., 183 (1983), 311-341.
[2] K. Ammar, Solutions Entropiques et Renormalisees de Quelques E.D.P. non Lineaires dans L1 , Thesis, Strasbourg, 2003.
[3] K. Ammar, F. Andreu, and J. Toledo, Quasi-linear elliptic problems in L 1 with non homogeneous boundary conditions, Rend. di Matematica, Serie VII, 26 (2006), 291-314.
[4] K. Ammar and P. Wittbold, Existence of renormalized solutions of degenerate elliptic-parabolic problems, Proc. Roy. Soc. Edinburgh Sect. A, 133 (2003), no. 3, 477-496.
[5] A.B. Andreianov, F. Bouhssis, Uniqueness for an elliptic-parabolic problem with Neumann boundary condition, J. Evol. Equ., 4 (2004), no. 2, 273-295.
[6] F. Andreu, N. Igbida, J.M. Mazon, and J. Toledo, L 1 existence and uniqueness results for quasi-linear elliptic equations with nonlinear boundary conditions, Ann. Inst. Henri Poincare: Analyse Non Lineaire, 24 (2007), 61-89.
[7] F. Andreu, J.M. Mazon and S. Segura de Leon, J. Toledo, Quasi-linear elliptic and parabolic equations in L 1 with nonlinear boundary conditions, Adv. Math. Sci. Appl., 7 (1997), no. 1, 183-213.
[8] H. Attouch and C. Picard, problemes variationnels et theorie du potentiel non lineaire, Ann. Fac. Sci. Toulouse, 1 (1979), 89-136.
[9] V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff, Leyden, 1976.
[10] Ph. Benilan, Equations D’evolution dans un Espace de Banach Quelconque et Applications, Thesis, Orsay, 1972.
[11] Ph. Benilan, L. Boccardo, T. Gallou ̈et, R. Gariepy, M. Pierre, and J.-L. Vasquez, An L 1 -theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa, 22 (1995), 241-273.
[12] Ph. Benilan, H. Brezis, and M.G. Crandall, A semilinear equation in L1 , Ann. Scuola Norm. Sup. Pisa, 2 (1975), 523-555.
[13] Ph. Benilan, J. Carrillo, and P. Wittbold, Renormalised entropy solutions of scalar conservation laws, Ann. Scuola Norm. Sup. Pisa, 29 (2000), 313-327.
[14] Ph. Benilan, M.G. Crandall and A. Pazy, Evolutions equations governed by accretive operators, To Appear.
[15] Ph. Benilan, M.G. Crandall and P. Sacks, Some L1 existence and Dependance for semilinear elliptic equations under nonlinear boundary conditions, App. Math. Optim, 17 (1988), 203-224.
[16] Ph. Benilan and P. Wittbold, On mild and weak solutions of elliptic-parabolic equations, Adv. Diff. Equ., 1 (1996), 1053-1073.
[17] L. Boccardo, T. Gallouet, and L. Orsina, Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data, Ann. Inst. Henri Poincare , 13 (1996), no. 5, 539-551.
[18] G. Bouchitte, Calcul des Variations en Cadre non Reflexif. Representation et Relaxation de Fonctionnelles Integrales sur un Espace de Mesures. Applications en Plasticite et Homogeneisation, These de Doctorat d’Etat. Perpignan, 1987.
[19] G. Bouchitt ́e, Conjugu ́ee et sous-diff ́erentiel d’une fonctionnelle int ́egrale sur un espace de Sobolev, C. R. Acad. Sci. Paris S ́er. I Math., 307 (1988), no. 2, 79-82.
[20] J. Carrillo, Entropy solutions for non linear degenerate problems, Arch. Ration. Mech. Anal., 147 (1999), 269-361.
[21] G. Dal Maso, F. Murat, and L. Orsina, A. Prignet, Renormalized solutions of elliptic equations with general Measure data, Ann. Scuola Norm. Sup. Pisa, 28 (1999), 741-808.
[22] R. DiPerna and P.L. Lions, On the Cauchy problem for the Boltzman equation: global existence and stability, Ann. of Math., 130 (1989), 321-366.
[23] N. Dunfort and L. Schwartz, Linear Oprators, Part I, Pure and Applied Mathematics, Vol VII.
[24] J.L. Lions, Quelques Methodes de R ́esolution des Problemes aux Limites non Lineaires, Dunod, Paris 1969.
[25] C.B.Jr. Morrey, Multiple Integrals in the Calculus of Variations, Springer-Verlag, 1966.
[26] J. Necas, Les Methodes Directes en Th ́eorie des Equations Elliptiques, Masson et Cie, Paris, 1967.
[27] A. Prignet, Conditions aux limites non homogenes pour des problemes elliptiques avec second membre mesure, Ann. Fac .Sci. Toulouse, 5 (1997), 297-318.
[28] F. Simondon, Etude de l’equation ∂ t b(u)−diva(b(u), Du) = 0 par la methode des semi-groupes dans L1 (Ω), Publ. Math. Besancon, Analyse non Lineaire, 7 (1983).
[29] P. Wittbold, Nonlinear diffusion with absorption, Pot. Anal., 7 (1997), 437-465.