Title | EXISTENCE RESULTS FOR NONAUTONOMOUS EVOLUTION EQUATIONS WITH NONLOCAL INITIAL CONDITIONS |
Publication Type | Journal Article |
Year of Publication | 2007 |
Authors | Aizicovici, S, Lee, H |
Secondary Title | Communications in Applied Analysis |
Volume | 11 |
Issue | 2 |
Start Page | 285 |
Pagination | 297 |
Date Published | 04/2007 |
Type of Work | scientific: mathematics |
ISSN | 1083–2564 |
AMS | 34G20, 34G25, 47J35 |
Abstract | We establish the existence of integral solutions to nonlocal Cauchy problems associated with time-dependent m−accretive operators in a general Banach space.
|
URL | http://www.acadsol.eu/en/articles/11/2/10.pdf |
Short Title | Nonautonomous Evolution Equations |
Refereed Designation | Refereed |
Full Text | References[1] S. Aizicovici and Y. Gao, Functional differential equations with nonlocal initial conditions, J. Appl. Math. Stochastic Anal., 10 (1997), 145-156.
[2] S. Aizicovici and H. Lee, Nonlinear nonlocal Cauchy problems in Banach spaces, Appl. Math. Lett., 18 (2005), 401-407. [3] S. Aizicovici and M. McKibben, Existence results for a class of abstract nonlocal Cauchy problems, Nonlinear Anal., 39 (2000), 649-668. [4] S. Aizicovici and V. Staicu, Multivalued evolution equations with nonlocal initial conditions in Banach spaces, NoDEA Nonlinear Differential Equations Appl., To Appear. [5] V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff, Leyden, 1976. [6] M. Benchohra, E.P. Gatsori, J. Henderson, and S.K. Ntouyas, Nondensely defined evolution impulsive differential inclusions with nonlocal conditions, J. Math. Anal. Appl., 286 (2003), 307-325. [7] M. Benchohra, E.P. Gatsori, and S.K. Ntouyas, Controllability results for semilinear evolution inclusions with nonlocal conditions, J. Optim. Theory Appl., 118 (2003), 493-513. [8] M. Benchohra, E.P. Gatsori, and S.K. Ntouyas, Multivalued semilinear neutral functional differential equations with nonconvex-valued right-hand side, Abstr. Appl. Anal. (2004), 525-541. [9] M. Benchohra, E.P. Gatsori, and S.K. Ntouyas, Existence results for semi-linear integrodifferential inclusions with nonlocal conditions, Rocky Mountain J. Math., 34 (2004), 833-848. [10] A. Bressan and G. Colombo, Extensions and selections of maps with decomposable values, Studia Math., 90 (1988), 69-86. [11] L. Byszewski, Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem, J. Math. Anal. Appl., 162 (1991), 494-505. [12] K. Deimling, Multivalued Differential Equations, de Gruyter Series in Nonlinear Analysis and Applications, 1. Walter de Gruyter & Co., Berlin, 1992. [13] S. Hu and N.S. Papageorgiou, Handbook of Multivalued Analysis. Vol. I. Theory, Mathematics and its Applications, 419, Kluwer Academic Publishers, Dordrecht, 1997. [14] S. Hu and N.S. Papageorgiou, Handbook of Multivalued Analysis. Vol. II. Applications, Mathematics and its Applications, 500, Kluwer Academic Publishers, Dordrecht, 2000. [15] A.G. Kartsatos, A compact evolution operator generated by a nonlinear time-dependent maccretive operator in a Banach space, Math. Ann., 302 (1995), 473-487. [16] A.G. Kartsatos and K. Shin, Solvability of functional evolutions via compactness methods in general Banach spaces, Nonlinear Anal., 21 (1993), 517-535. [17] N.H. Pavel, Nonlinear Evolution Operators and Semigroups. Applications to Partial Differential Equations, Lecture Notes in Math., 1260, Springer-Verlag, Berlin, 1987. [18] N.H. Pavel, Differential equations associated with compact evolution generators, Differential Integral Equations, 1 (1988), 117-123. [19] N.H. Pavel, Compact evolution operators, Differential Integral Equations, 2 (1989), 57-62. [20] H. Schaefer, Uberdie Methode der a priori schranken, Math. Ann., 129 (1955), 415-416. [21] I.I. Vrabie, Compactness Methods for Nonlinear Evolutions, Pitman Monographs Surveys Pure Appl. Math., 32, Longman Scientific and Technical, Harlow, 1987. [22] T.J. Xiao and J. Liang, Existence of classical solutions to nonautonomous nonlocal parabolic problems, Nonlinear Anal., 63 (2005), 225-232. [23] X. Xue, Nonlinear differential equations with nonlocal conditions in Banach spaces, Nonlinear Anal., 63 (2005), 575-586. [24] E. Zeidler, Nonlinear Functional Analysis and its Applications. Vol. II/B, Springer-Verlag, New York, 1985. |