EXISTENCE RESULTS FOR NONAUTONOMOUS EVOLUTION EQUATIONS WITH NONLOCAL INITIAL CONDITIONS

TitleEXISTENCE RESULTS FOR NONAUTONOMOUS EVOLUTION EQUATIONS WITH NONLOCAL INITIAL CONDITIONS
Publication TypeJournal Article
Year of Publication2007
AuthorsAizicovici, S, Lee, H
Secondary TitleCommunications in Applied Analysis
Volume11
Issue2
Start Page285
Pagination297
Date Published04/2007
Type of Workscientific: mathematics
ISSN1083–2564
AMS34G20, 34G25, 47J35
Abstract
We establish the existence of integral solutions to nonlocal Cauchy problems associated with time-dependent m−accretive operators in a general Banach space.
URLhttp://www.acadsol.eu/en/articles/11/2/10.pdf
Short TitleNonautonomous Evolution Equations
Refereed DesignationRefereed
Full Text

References

[1] S. Aizicovici and Y. Gao, Functional differential equations with nonlocal initial conditions, J. Appl. Math. Stochastic Anal., 10 (1997), 145-156.
[2] S. Aizicovici and H. Lee, Nonlinear nonlocal Cauchy problems in Banach spaces, Appl. Math. Lett., 18 (2005), 401-407.
[3] S. Aizicovici and M. McKibben, Existence results for a class of abstract nonlocal Cauchy problems, Nonlinear Anal., 39 (2000), 649-668.
[4] S. Aizicovici and V. Staicu, Multivalued evolution equations with nonlocal initial conditions in Banach spaces, NoDEA Nonlinear Differential Equations Appl., To Appear.
[5] V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff, Leyden, 1976.
[6] M. Benchohra, E.P. Gatsori, J. Henderson, and S.K. Ntouyas, Nondensely defined evolution impulsive differential inclusions with nonlocal conditions, J. Math. Anal. Appl., 286 (2003), 307-325.
[7] M. Benchohra, E.P. Gatsori, and S.K. Ntouyas, Controllability results for semilinear evolution inclusions with nonlocal conditions, J. Optim. Theory Appl., 118 (2003), 493-513.
[8] M. Benchohra, E.P. Gatsori, and S.K. Ntouyas, Multivalued semilinear neutral functional differential equations with nonconvex-valued right-hand side, Abstr. Appl. Anal. (2004), 525-541.
[9] M. Benchohra, E.P. Gatsori, and S.K. Ntouyas, Existence results for semi-linear integrodifferential inclusions with nonlocal conditions, Rocky Mountain J. Math., 34 (2004), 833-848.
[10] A. Bressan and G. Colombo, Extensions and selections of maps with decomposable values, Studia Math., 90 (1988), 69-86.
[11] L. Byszewski, Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem, J. Math. Anal. Appl., 162 (1991), 494-505.
[12] K. Deimling, Multivalued Differential Equations, de Gruyter Series in Nonlinear Analysis and Applications, 1. Walter de Gruyter & Co., Berlin, 1992.
[13] S. Hu and N.S. Papageorgiou, Handbook of Multivalued Analysis. Vol. I. Theory, Mathematics and its Applications, 419, Kluwer Academic Publishers, Dordrecht, 1997.
[14] S. Hu and N.S. Papageorgiou, Handbook of Multivalued Analysis. Vol. II. Applications, Mathematics and its Applications, 500, Kluwer Academic Publishers, Dordrecht, 2000.
[15] A.G. Kartsatos, A compact evolution operator generated by a nonlinear time-dependent maccretive operator in a Banach space, Math. Ann., 302 (1995), 473-487.
[16] A.G. Kartsatos and K. Shin, Solvability of functional evolutions via compactness methods in general Banach spaces, Nonlinear Anal., 21 (1993), 517-535.
[17] N.H. Pavel, Nonlinear Evolution Operators and Semigroups. Applications to Partial Differential Equations, Lecture Notes in Math., 1260, Springer-Verlag, Berlin, 1987.
[18] N.H. Pavel, Differential equations associated with compact evolution generators, Differential Integral Equations, 1 (1988), 117-123.
[19] N.H. Pavel, Compact evolution operators, Differential Integral Equations, 2 (1989), 57-62.
[20] H. Schaefer, Uberdie Methode der a priori schranken, Math. Ann., 129 (1955), 415-416.
[21] I.I. Vrabie, Compactness Methods for Nonlinear Evolutions, Pitman Monographs Surveys Pure Appl. Math., 32, Longman Scientific and Technical, Harlow, 1987.
[22] T.J. Xiao and J. Liang, Existence of classical solutions to nonautonomous nonlocal parabolic problems, Nonlinear Anal., 63 (2005), 225-232.
[23] X. Xue, Nonlinear differential equations with nonlocal conditions in Banach spaces, Nonlinear Anal., 63 (2005), 575-586.
[24] E. Zeidler, Nonlinear Functional Analysis and its Applications. Vol. II/B, Springer-Verlag, New York, 1985.