A POROSITY RESULT FOR VARIATIONAL PROBLEMS ARISING IN CRYSTALLOGRAPHY

TitleA POROSITY RESULT FOR VARIATIONAL PROBLEMS ARISING IN CRYSTALLOGRAPHY
Publication TypeJournal Article
Year of Publication2006
AuthorsZaslavski, AJ
Secondary TitleCommunications in Applied Analysis
Volume10
Issue4
Start Page551
Pagination562
Date Published12/2006
Type of Workscientific: mathematics
ISSN1083–2564
AMS49J99, 74E15
Abstract

In this paper we study the structure of minimizers of variational problems which describe step-terraces on surfaces of crystals.

URLhttp://www.acadsol.eu/en/articles/10/4/8.pdf
Short TitleA Porosity Result for Variational Problems
Refereed DesignationRefereed
Full Text

REFERENCES

[1] Y. Benyamini and J. Lindenstrauss, Geometric Nonlinear Functional Analysis, Amer. Math. Soc., Providence, RI, 2000.
[2] B. Dacorogna and C.E. Pfister, Wulff Theorem and best constant in Sobolev inequality, J. Math. Pures Appl., 71 (1992), 97-118.
[3] F.S. De Blasi and J. Myjak, Sur la porosite des contractions sans point fixe, C.R. Acad. Sci. Paris, 308 (1989), 51-54.
[4] F.S. De Blasi, J. Myjak, and P. L. Papini, Porous sets in best approximation theory, J. London Math. Soc., 44 (1991), 135-142.
[5] I. Fonseca, The Wulff Theorem revisited, Proc. R. Soc. Lond. A, 432 (1991), 125-145.
[6] J. Hannon et al, Step faceting at the (001) surface of boron doped silicon, Phys. Rev. Lett., 79 (1887), 4226-4229.
[7] J. Hannon, M. Marcus and V.J. Mizel, A variational problem modelling behavior of unorthodox silicon crystals, ESAIM Control Optim. Calc. Var., 9 (2003), 145-149.
[8] H.C. Jeng and E.D. Williams, Steps on surfaces: experiment and theory, Surface Science Reports, 34 (1999), 175-294.
[9] V.J. Mizel and A.J. Zaslavski, Anisotropic functions: a genericity result with crystallographic implications, ESAIM: Control, Optimization and the Calculus of Variations, To Appear.
[10] A.J. Zaslavski, Well-posedness and porosity in optimal control without convexity assumptions,Calculus of Variations and Partial Differential Equations, 13 (2001), 265-293.