NUMERICAL METHODS FOR QUASILINEAR PARABOLIC DIFFERENTIAL FUNCTIONAL EQUATIONS WITH NEUMANN INITIAL BOUNDARY CONDITIONS

TitleNUMERICAL METHODS FOR QUASILINEAR PARABOLIC DIFFERENTIAL FUNCTIONAL EQUATIONS WITH NEUMANN INITIAL BOUNDARY CONDITIONS
Publication TypeJournal Article
Year of Publication2006
AuthorsCiarski, R
Secondary TitleCommunications in Applied Analysis
Volume10
Issue3
Start Page313
Pagination329
Date Published08/2006
Type of Workscientific: mathematics
ISSN1083–2564
AMS35R10, 65M12
Abstract

The aim of this paper is to present a numerical approximation for quasilinear parabolic differential functional equations with initial boundary conditions of the Neumann type and coefficients satisfying Perron estimates. The convergence result is proved for a difference scheme with the property that the difference operators approximating mixed derivatives depend on local properties of the coefficients of the differential equation. A numerical example is given.

URLhttp://www.acadsol.eu/en/articles/10/3/4.pdf
Short TitleNumerical Methods for Quasilinear Parabolic Equations
Refereed DesignationRefereed
Full Text

REFERENCES

[1] R. Ciarski, Numerical approximations of parabolic differential functional equations with the initial boundary conditions of the Neumann type, Ann. Polon. Math., 84 (2004), no. 2, 103-119.
[2] Z. Kamont, M. Kwapisz, Difference methods for nonlinear parabolic differential-functional systems with initial boundary conditions of the Neumann type, Comment. Math. Prace Mat., 28 (1989), no. 2, 223-248.
[3] Z. Kamont, M. Kwapisz, S. Zacharek, On difference-functional inequalities related to some classes of partial differential-functional equations, Math. Nachr., 146 (1990), 335-360.
[4] Z. Kamont, S. Zacharek, Line method approximations to the initial-boundary value problem of Neumann type for parabolic differential-functional equations, Comment. Math. Prace Mat., 30 (1991), no. 2, 317-330.
[5] M. Malec, Sur la methode des differences finies pour uneequation differentielle partielle non-lineaire parabolique sans derivees mixtes avec la condition aux limites du type de Neumann, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 22 (1974), 495-501.
[6] M. Malec, Sur une famille biparametrique de schmas des differences finies pour un systeme d ́equations paraboliques aux derivees mixtes et avec des conditions aux limites du type de Neumann, Ann. Polon. Math., 32 (1976), no. 1, 33-42.
[7] M. Malec, Schema des differences finies pour un systeme d’ ́equations non lineaires partielles elliptiques aux d ́erivees mixtes et avec des conditions aux limites du type de Neumann, Ann. Polon. Math., 34 (1977), no. 3, 277-287.
[8] C.V. Pao, Finite difference reaction-diffusion systems with coupled boundary conditions and time delays, J. Math. Anal. Appl., 272 (2002), no. 2, 407-434.
[9] Z. Weglowski, On a difference method for non-linear parabolic equations with mixed derivatives, Zeszyty Nauk. Uniw. Jagiello. Prace Mat., 16 (1974), 161-167.