Title | NUMERICAL METHODS FOR QUASILINEAR PARABOLIC DIFFERENTIAL FUNCTIONAL EQUATIONS WITH NEUMANN INITIAL BOUNDARY CONDITIONS |
Publication Type | Journal Article |
Year of Publication | 2006 |
Authors | Ciarski, R |
Secondary Title | Communications in Applied Analysis |
Volume | 10 |
Issue | 3 |
Start Page | 313 |
Pagination | 329 |
Date Published | 08/2006 |
Type of Work | scientific: mathematics |
ISSN | 1083–2564 |
AMS | 35R10, 65M12 |
Abstract | The aim of this paper is to present a numerical approximation for quasilinear parabolic differential functional equations with initial boundary conditions of the Neumann type and coefficients satisfying Perron estimates. The convergence result is proved for a difference scheme with the property that the difference operators approximating mixed derivatives depend on local properties of the coefficients of the differential equation. A numerical example is given. |
URL | http://www.acadsol.eu/en/articles/10/3/4.pdf |
Short Title | Numerical Methods for Quasilinear Parabolic Equations |
Refereed Designation | Refereed |
Full Text | REFERENCES[1] R. Ciarski, Numerical approximations of parabolic differential functional equations with the initial boundary conditions of the Neumann type, Ann. Polon. Math., 84 (2004), no. 2, 103-119.
[2] Z. Kamont, M. Kwapisz, Difference methods for nonlinear parabolic differential-functional systems with initial boundary conditions of the Neumann type, Comment. Math. Prace Mat., 28 (1989), no. 2, 223-248.
[3] Z. Kamont, M. Kwapisz, S. Zacharek, On difference-functional inequalities related to some classes of partial differential-functional equations, Math. Nachr., 146 (1990), 335-360. [4] Z. Kamont, S. Zacharek, Line method approximations to the initial-boundary value problem of Neumann type for parabolic differential-functional equations, Comment. Math. Prace Mat., 30 (1991), no. 2, 317-330.
[5] M. Malec, Sur la methode des differences finies pour uneequation differentielle partielle non-lineaire parabolique sans derivees mixtes avec la condition aux limites du type de Neumann, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 22 (1974), 495-501.
[6] M. Malec, Sur une famille biparametrique de schmas des differences finies pour un systeme d ́equations paraboliques aux derivees mixtes et avec des conditions aux limites du type de Neumann, Ann. Polon. Math., 32 (1976), no. 1, 33-42. [7] M. Malec, Schema des differences finies pour un systeme d’ ́equations non lineaires partielles elliptiques aux d ́erivees mixtes et avec des conditions aux limites du type de Neumann, Ann. Polon. Math., 34 (1977), no. 3, 277-287. [8] C.V. Pao, Finite difference reaction-diffusion systems with coupled boundary conditions and time delays, J. Math. Anal. Appl., 272 (2002), no. 2, 407-434. [9] Z. Weglowski, On a difference method for non-linear parabolic equations with mixed derivatives, Zeszyty Nauk. Uniw. Jagiello. Prace Mat., 16 (1974), 161-167. |