REFERENCES
[1] G. Da Prato, K. D. Elworthy, and J. Zabczyk, Strong Feller property for
stochastic semilinear equations, Stoch. Anal. Appl., 13 (1995), 35-45.
[2] G. Da Prato, Regularity results for Kolmogorov equations in L 2 (H, µ) spaces
and applications, Ukrainian Mathematical Journal, 49 (1997), no. 3, 448-457.
[3] G. Da Prato, Perturbations of Ornstein-Uhlenbeck transition semigroups by a
subquadratic potential, Commun. Appl. Anal., 2 (1998), 431-444.
[4] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Encyclopedia
of Mathematics and its Applications, Cambridge University Press, 1992.
[5] G. Da Prato and J. Zabczyk, Ergodicity for Infinite Dimensional Systems,
London Mathematical Society Lecture Note Series, 229, Cambridge University Press, 1996.
[6] G. Da Prato and J. Zabczyk, Differentiability of the Feynman-Kac semigroup
and a control application, Rend. Mat. Acc. Lincei, s.9, v.8 (1997), 183-188.
[7] M. Fuhrman, Smoothing properties of transition semigroups in Hilbert spaces,
Nonlinear Differential Equations Appl., 3 (1996), 445-464.
[8] M. Fuhrman, On a class of stochastic equations in Hilbert spaces: solvability
and smoothing properties, Stochastic Anal. Appl., 17 (1999), no. 1, 43-69.
[9] M. Fuhrman, Regularity properties of transition probabilities in infinite dimensions,
Stochastics and Stochastics Rep., 69 (2000), 31-65.
[10] B. Gaveau, Noyau des probabilites de transition de certains operateurs d’
Ornstein Uhlenbeck dans les espaces de Hilbert, C. R. Acad. Sc. Paris, 293 (1981)469-472.
[11] B. Gaveau and J. M. Moulinier, R´egularit´e des mesures et perturbations
stochastiques de champs de vecteurs sur des espaces de dimension infinie, Publ.
RIMS Kyoto Univ., 21 (1985), 593-616.
[12] G. Jona-Lasinio and R. S´en´eor, Study of stochastic differential equations by
constructive methods. I., J. Statist. Phys., 83 (1996), 1109-1148.
[13] Y. Miyahara, Infinite dimensional Langevin equation and Fokker-Planck equation,
Nagoya Math. J., 81 (1981), 177-223.
[14] S. Peszat and J. Zabczyk, Strong Feller property and irreducibility for diffusions
on Hilbert spaces, Ann. Probab., 23, (1995), 157-172.
[15] I. Sim˜ao, A conditioned Ornstein-Uhlenbeck process on a Hilbert space, Stochastic
Anal. Appl., 9, (1991), 85-98.
[16] I. Sim˜ao, Regular transition densities for infinite-dimensional diffusions, Stochastic
Anal. Appl., 11 (1993), no. 3, 309-336.
[17] I. Sim˜ao, ”Pinned Ornstein-Uhlenbeck processes on an infinite dimensional
space”, Stochastic Analysis and Applications, Proceedings of the Fifth Gregynog
Symposium, eds. I. M. Davies, A. Truman, K. D. Elworthy, World
Scientific Press, Singapore, (1996), 401-407.
[18] I. Sim˜ao, Regularity of the heat semigroup generated by certain operators on
a Hilbert space, Stochastic Anal. Appl., 14 (1996), no. 2, 201-235.
[19] I. Sim˜ao, A continuous kernel for the transition semigroup associated with a
diffusion process in a Hilbert space, Semigroup Forum, 71 (2005), no. 1, 49-72.
[20] J. A. Van Casteren, Generators of Strongly Continuous Semigroups, Pitman
Research Notes in Mathematics, 115, Pitman advanced publishing program,
Boston-London-Melbourne, 1985.