STATE-SPACE SYSTEM IDENTIFICATION PROBLEM FOR SOME NONLINEAR BIOLOGICAL MODELS

TitleSTATE-SPACE SYSTEM IDENTIFICATION PROBLEM FOR SOME NONLINEAR BIOLOGICAL MODELS
Publication TypeJournal Article
Year of Publication2018
AuthorsANTONOV ANDREY, NENOV SVETOSLAV, TSVETKOV TSVETELIN
JournalNeural, Parallel, and Scientific Computations
Volume26
Issue3
Start Page311
Pagination16
Date Published11/2018
ISSN1061-5369
Keywordsdynamical systems, first integral, Lotka-Volterra system, numerical examples, problem of parameter estimation, state-space system identification
Abstract

The article is concerned with the problem of parameter estimation in the general case of dynamical systems in the form of state-space. Supposing the existence of first integral(s) of the system, we proved some conditions for solvability of the problem.

As a set of examples, we considered the classical Lotka-Volterra system. We proved that a solution of state-space identification problem is also a solution of a set of nonlinear equations. Based on this result, some applications (using CAS Maple) are presented.

URLhttps://acadsol.eu/npsc/articles/26/3/7.pdf
DOI10.12732/npsc.v26i3.7
Refereed DesignationRefereed
Full Text

[1] Daniel Brewer,Martino Barenco, Robin Callard, Michael Hubank, Jaroslav Stark, Fitting ordinary differential equations to short time course data, Philosophical Transactions of the Royal Society A: Mathematical, Physical  and Engineering Sciences (2008), doi: 10.1098/rsta.2007.2108.
[2] E.B. Cox, M.A. Woodbury, L.E. Myers, A new model for tumor growth analysis based on a postulated inhibitory substance, Comp. Biomed. Res., 13 (1980), 437.
[3] Angel Dishliev, Katya Dishlieva, Svetoslav Nenov, Specific Asymptotic Properties of the Solutions of Impulsive Differential Equations. Methods and Applications, Academic Publications, 2012, available at  http://www.acadpubl.eu/ap/node/3.
[4] P. Hartman, Ordinary differential equations, New York, Wiley, 1964.
[5] Joseph M. Mahaffy, Lotka-Volterra Models (2009), https://jmahaffy.sdsu.edu/courses/f09/math636/lectures/lotka/qualde2.html.
[6] Miljenko Marusic, Mathematical Models of Tumor Growth, Lecture presented at the Mathematical Colloquium in Osijek organized by Croatian Mathematical Society, Division Osijek, June 7, 1996.
[7] M. Marusic, Z. Bajzer, J.P. Freyer, S. Vuk-Pavlovic, Analysis of growth of multicellular tumour spheroids by mathematical models, Cell Prolif., 27 (1994), 7394.
[8] T. Mckelvey, Fully parametrized statespace models in system identification, IFAC Proceedings Volumes, 27, No. 8 (1994), doi: 10.1016/S1474-6670(17)47786-X.
[9] S. Nenov, Impulsive controllability and optimization problems. Lagrange’smethod and applications, ZAA - Zeitschrift f¨ur Analysis und ihre Anwendungen, Heldermann Verlag, Berlin, 17, No. 2 (1998), 501-512.
[10] S. Piantadosi, A model of growth with first-order birth and death rates, Comp. Biomed. Res., 18 (1985), 220-232.
[11] Janos D. Pinter, Global Optimization with Maple, Pinter Consulting Services Inc., Maplesoft (2006), ISBN: 1-897310-15-3, doi: 10.1504/IJMIC.2006.012709.
[12] Janos D. Pinter, Global Optimization: Scientific and Engineering Case Studies, Springer (2006), ISBN: 0387304088.
[13] Janos D. Pinter, Global Optimization in Action: Continuous and Lipschitz Optimization: Algorithms, Implementations and Applications, Springer (1995), ISBN: 0792337573.
[14] Katarzyna A. Rejniak, A single cell approach in modeling the dynamics of tumor microregions, Mathematical Biosciences and Engineering, https://mbi.osu.edu/files/8713/3528/0115/techreport_29.pdf
[15] Thomas B. Schon, Adrian Willsb, Brett Ninness, System identification of nonlinear state-space models, Automatica, 47, No. 1 (2011), doi: 10.1016/j.automatica.2010.10.013.
[16] A. Tsoularis, Analysis of logistic growth models, Res. Lett. Inf. Math. Sci., 2 (2001), 23-46.
[17] T.E. Wheldon, J. Kirk, W.M. Grey, Mitotic autoregulation, growth control and neoplasia, J. Theor. Biol., 38 (1973), 627.
[18] Uri Wilensky, Kenneth Reisman, Thinking like a wolf, a sheep or a firefly: Learning biology through constructing and testing computational theories – an embodied modeling approach, Center for Connected Learning and Computer-Based Modeling, Northwestern University (1992), http://ccl.northwestern.edu/papers/bio/long/