REFERENCES
[1] R. Anguelov, S. Markov, Hausdorff Continuous Interval Functions and Approximations, In: SCAN 2014 Proceedings, LNCS, ed. by J.W.von Gudenberg, Springer, Berlin (2015).
[2] J. H. van derWalt, The Linear Space of Hausdorff Continuous Interval Functions, Biomath, 2 (2013), 1311261.
[3] J. Dombi, Z. Gera, The approximation of piecewise linear membership functions and Likasiewicz operators, Fuzzy Sets and Systems, 154 (2005), 275-286.
[4] A. Iliev, N. Kyurkchiev, S. Markov, On the Approximation of the Cut and Step Functions by Logistic and Gompertz Functions, Biomath, 4 No. 2 (2015).
[5] F. Hausdorff, Set theory (2 ed.), Chelsea Publ., New York (1962) [1957], ISBN 978-0821838358, Republished by AMS-Chelsea (2005).
[6] B. Sendov, Hausdorff Approximations, Kluwer, Boston (1990).
[7] P.-F. Verhulst, Notice sur la loi que la population poursuit dans son accroissement, Correspondance mathematique et physique, 10 (1838), 113-121.
[8] P.-F. Verhulst, Recherches mathematiques sur la loi d’accroissement de la population (Mathematical Researches into the Law of Population Growth Increase),
Nouveaux Memoires de l’Academie Royale des Sciences et Belles-Lettres de Bruxelles, 18 (1845), 1-42.
[9] P.-F. Verhulst, Deuxieme memoire sur la loi d’accroissement de la population, Memoires de l’Academie Royale des Sciences, des Lettres et des Beaux-Arts de
Belgique, 20 (1847), 1-32.
[10] A. A. Blumberg, Logistic growth rate functions, J. Theoret. Biol., 21 (1968), 42-44.
[11] M. Turner, E. Bradley, K. Kirk, K. Pruitt, A theory of growth, Math. Biosci., 29 (1976), 367-373.
[12] A. Tsoularis, Analysis of logistic growth models, Les. Lett. Inf. Math. Sci., 2 (2001), 23-36.
[13] N. Kyurkchiev, S. Markov, Sigmoidal Functions: Some Computational and Modelling Aspects, Biomath Communications, 1 No. 2 (2014).
[14] N. Kyurkchiev, S. Markov, Sigmoid functions: Some Approximation and Modelling Aspects. Some Moduli in Programming Environment MATHEMATICA, LAP LAMBERT Acad. Publ. (2015).
[15] N. Kyurkchiev, S. Markov, On the Hausdorff distance between the Heaviside step function and Verhulst logistic function, J. Math. Chem., 54 No. 1 (2016), 109-119.
[16] N. Kyurkchiev, A new transmuted cumulative distribution function based on the Verhulst logistic function with application in population dynamics, Biomath Communications, 4 No. 1 (2017).
[17] S. Markov, A. Iliev, A. Rahnev, N. Kyurkchiev, A note on the Log-logistic and transmuted Log-logistic models. Some applications, Dynamic Systems and Applications, 27 No. 3 (2018), 593-607.
[18] N. Kyurkchiev, S. Markov, A family of recurrence generated sigmoidal functions based on the log-logistic function. Some approximation aspects, Biomath Communications, 5 No. 1 (2018), (18 pp).
[19] A. Iliev, N. Kyurkchiev, S. Markov, Approximation of the Cut Function by Stannard and Richard Sigmoid Functions, International Journal of Pure and Applied Mathematics, 109 No. 1 (2016), 119-128.
[20] N. Kyurkchiev, S. Markov, On the Approximation of the Generalized Cut Function of Degree p+1 By Smooth Sigmoid Functions, Serdica Journal of Computing, 9 No. 1 (2015).
[21] R. Anguelov, N. Kyurkchiev, S. Markov, A note on the Blumberg’s hyper-log-logistic model, BIOMATH, (2018). (to appear)
[22] Z. Chen, F. Cao, The Approximation Operators with Sigmoidal Functions, Computers & Mathematics with Applications, 58 (2009), 758-765.
[23] Z. Chen, F. Cao, The Construction and Approximation of a Class of Neural Networks Operators with Ramp Functions, Journal of Computational Analysis and Applications, 14 (2012), 101-112.
[24] Z. Chen, F. Cao, J. Hu, Approximation by Network Operators with Logistic Activation Functions, Applied Mathematics and Computation, 256 (2015), 565-571.
[25] D. Costarelli, Sigmoidal Functions Approximation and Applications, Dottorato di Ricera in Matematica, Departiment di Matematica e Fisica, Sezione di Matematica, Roma, UNIVERSITA DEGLI STUDI (2014).
[26] D. Costarelli, R. Spigler, Approximation Results for Neural Network Operators Activated by Sigmoidal Functions, Neural Networks, 44 (2013), 101-106.
[27] D. Costarelli, R. Spigler, Constructive Approximation by Superposition of Sigmoidal Functions, Anal. Theory Appl., 29 (2013), 169-196.
[28] D. Costarelli, G. Vinti, Pointwise and uniform approximation by multivariate neural network operators of the max-product type, Neural Networks, (2016), doi: 10.1016/j.neunet.2016.06.002.
[29] D. Costarelli, R. Spigler, Solving numerically nonlinear systems of balance laws by multivariate sigmoidal functions approximation, Computational and Applied Mathematics, (2016), doi: 10.1007/s40314-016-0334-8.
[30] D. Costarelli, G. Vinti, Convergence for a family of neural network operators in Orlicz spaces, Mathematische Nachrichten, (2016), doi: 10.1002/mana.20160006.
[31] N. Guliyev, V. Ismailov, A single hidden layer feedforward network with only one neuron in the hidden layer san approximate any univariate function, Neural Computation, 28 (2016), 1289-1304.
[32] I. A. Basheer, M. Hajmeer, Artificial neural networks: fundamentals, computing, design, and application, Journal of Microbiological Methods, 43 (2000), 3-31.
[33] Y. Prostov, Y. Tiumentsev, Recurrent neurodynamic model of neuron with variable activation characteristic, Biologically Inspired Cognitive Architectures, (2018), (8 pp.)
[34] Y. Chalco-Cano, H. Roman-Flores, F. Gomida, A new type of approximation for fuzzy intervals, Fuzzy Sets and Systems, 159 No. 11 (2008), 1376-1383.
[35] Z. Quan, Z. Zhang, The construction and approximation of the neural network with two weights, J. Appl. Math., (2014), doi: 10.1155/2014/892653.
[36] N. Pavlov, A. Iliev, A. Rahnev, N. Kyurkchiev, Some software reliability models: Approximation and modeling aspects, LAP LAMBERT Academic Publishing, (2018).
[37] N. Pavlov, A. Iliev, A. Rahnev and N. Kyurkchiev, Nonstandard Models in Debugging Theory (Part 2), LAP LAMBERT Academic Publishing, (2018).