(M,K)-QUASI CLASS Q AND (M,K)-QUASI *CLASS Q COMPOSITION OPERATORS ON WEIGHTED HARDY SPACE

Title(M,K)-QUASI CLASS Q AND (M,K)-QUASI *CLASS Q COMPOSITION OPERATORS ON WEIGHTED HARDY SPACE
Publication TypeJournal Article
Year of Publication2017
AuthorsDEVIKA, A, SURESH, G
Secondary TitleCommunications in Applied Analysis
Volume21
Issue1
Start Page1
Pagination14
Date Published01/2017
Type of Workscientific: mathematics
ISSN1083-2564
AMS47B15, 47B20, 47B99
Abstract

In this paper we discuss the conditions for a composition operator and a weighted composition operator to be (M,k) quasi class Q and (M,k) quasi * class Q operator and also the characterization of (M,k) quasi class Q and (M,k) quasi * class Q composition operators on weighted Hardy space.
 

URLhttp://www.acadsol.eu/en/articles/21/1/1.pdf
DOI10.12732/caa.v21i1.1
Short TitleComposition Operators on Weighted Hardy Space
Alternate JournalCAA
Refereed DesignationRefereed
References

REFERENCES

[1] Anuradha Gupta and Neha Bhatia, On (n,k)-Quasi Paranormal Weighted Composition Operator, International Journal of Pure and Applied Mathematics, 91, No.1 (2014), 23-32.
[2] J. Campbell and J. Jamison, On some classes of weighted composition operators, Glasgow Math. J., 32 (1990), 82-94.
[3] C. Cowen, Composition Operators on H 2, J. Operator theory, 9 (1983), 77-106.
[4] C. C. Cowen and T. L. Kriete, Subnormality and Composition Operators on H 2 , Journal of functional Analysis,81 (1988), 298-319.
[5] Carl C. Cowen, Linear Fractional Composition Operators on H 2 , J. Integral Equality and Operator theory, 11 (1988), 151-160.
[6] B. P. Duggal, C. S. Kubrusly and N. Leven, Contractions of class Q and invariant subspaces, bull. J. Korean Math. Soc., 42 (2005), 77-106.
[8] E. A. Nordgeen, P. Rosenthal and F. S. Wintrobe, Invertible Composition Operator on H 2, journal of functional Analysis, 73 (1987), 324-344.
[9] E. A. Nordgeen, Composition Operator in Hilbert space, In Hilbert space, operators, lecturer notes in Math., J. Operator theory, 693 (1977), 37-63.
[10] D. Kavitha, k-Quasi Class Q Composition Operators, International Journal of Pure and Applied Mathematics, 106, No.7 (2016), 121-128.
[11] J. V. Ryff, Subordinate H p function , Duke math. J, 33 (1966), 347-354.
[12] D. Senthilkumar, P. Maheswari Naik and R. Santhi, Weighted Composition of k-Quasi -Paranormal operators, International Journal of Matematical Archive, 3(2) (2012), 739-746.
[13] S. Panayappan, D. Senthilkumar and R. Mohanraj, M-Quasi hyponormal Composition Operators on weighted Hardy spaces, Int. Journal of Math. Analysis, 2 (2008), 1163-1170.
[14] A. Lambert, Hyponormal Composition Operators, Bull. London Math. Soc., 18 (1986), 125-134.
[15] T. Veluchamy and T. Thulasimani, Posinormal Composition Operators on Weighted Hardy space, International Mathematical forum, 5, No. 24 (2010), 1195-1205.
[16] J. Wolff Sur 1 iteration desfunctions, C. R. Acad. Sci. Pairs ser. A, 182 (1926), 42-43.
[17] J. T. Yuan and G. X. Ji, On (n,k)-quasi paranormal operators, Studia Math, 209 (2012), 289-301.
[18] Q. Zeng and H. Zhong, On (n,k)-quasi *paranormal operators, Studia Math (2012), 1-13.